Диалоги (апрель 2003 г.) | страница 2
И это тоже один из самых важных моментов, важных как в приложениях, так и в теоретических исследованиях. Но чтобы разобраться в общей теории относительности, конечно, очень важно перейти к её основам, к принципам, на которых она строится.
В.Л. Кстати, о принципах. Александр Николаевич начал своё выступление с того, что теория гравитации фактически оказалась теорией пространства-времени. Она оказалась геометрической теорией. Здесь стоило бы поговорить о том, какие общие принципы или, скажем так, какие общие идеи двигали Эйнштейном, когда он придумал общую теорию относительности.
Здесь надо сказать о довольно парадоксальной вещи. Оказывается, с современной точки зрения можно сказать так, что Эйнштейном двигала ошибочная идея.
Известный в своё время, как говорилось в советской науке, буржуазный философ Мах, когда-то изобрёл один принцип, который совершенно овладел Эйнштейном. То есть, Эйнштейн свято верил в него.
Я, кстати, хочу сказать, что Эйнштейн, написав несколько работ по общей теории относительности, в конце которых он вывел правильное уравнение, потом сел и написал одну общую работу, где он показал каждый шаг создания общей теории относительности и рассказал о тех самых идеях, которые двигали им на каждом шаге. И начинает он эту работу именно с принципа Маха. Принцип Маха это поразительная вещь такая. Его, может быть, напомнить надо, очень коротко.
Он сводится к тому, что в пустоте у тел нет инерции, или нет массы. Когда мы говорим слово «масса», мы, как правило, имеем в виду сопротивляемость тела началу движения или, наоборот, способность тела сохранять движение.
Что такое движение? Движение – это понятие пространственное. Это изменение чего-то относительно чего-то в пространстве. И инертная масса она является в этом смысле чисто геометрической величиной, мерой геометрической изменчивости, изменчивости чего-то в геометрическом пространстве.
Попытаюсь объяснить очень просто. «Возьмём два шара», – говорит Эйнштейн вслед за Махом. Два жидких шара в пустоте, которые вращаются вокруг общей оси, они могут сжиматься, вытягиваться вдоль экватора. И возьмём двух наблюдателей, которые измеряют формы этих шаров. Оба наблюдателя измерили форму этих шаров независимо. Они вращаются синхронно вокруг общей оси.
Один говорит: «Я вижу шар», а другой говорит: «Я вижу репу: шар мой вытянулся». Из-за вращения он стал сплюснутым у полюсов. Кто из них прав?
Первый говорит: «Ну, что я вижу? Я вижу, что вокруг меня пустое пространство, я неподвижен относительно этого пустого пространства».