Диалоги (апрель 2003 г.) | страница 13



И смотрите, что получается. С одной стороны, современная квантовая теория даёт огромную энергию этого вакуума. Примерно на сто порядков больше, чем ту, которую мы сейчас наблюдаем во Вселенной.

Но мы знаем, что наука развивается сложным образом. Возможно, там происходит компенсация. Ведь нет теории квантовой гравитации, поэтому нет ответа на вопрос. Для меня кажется более важным следующее, что открытие энергии пустоты вакуума поднимает теорию относительности на более высокую величину.

Геометрическая теория Эйнштейна, она была создана таким образом, как будто бы она знала, что пустота не может быть пустой. Вот что удивительно. И в этом смысле общая теория относительности где-то уже приближается к самой загадочной из всех наук – к термодинамике. Все теории, созданные в ХХ веке, должны были оглядываться на законы сохранения энергии. Неизвестно, почему они должны работать – это принимается как постулат термодинамики. И в этом смысле «лямбда-член» Эйнштейна – это и есть некое совершенно удивительное предсказание одного из главных следствий квантовой механики – энергии вакуума. И на это хотелось бы обратить особое внимание. Но, конечно есть проблемы очень большие.

А.П. Возвращаясь, вернее, оставаясь в рассуждении о «лямбда-члене», на самом деле к нему подходят с разных точек зрения. Можно подойти с помощью некоего небольшого изменения самой геометрической теории. В теории Эйнштейна «лямбда-член» задаётся с самого начала, изначально. А можно немножко изменить построение теории, которое приведёт к каким-то уравнениям. Потом можно их решать, и в процессе этого решения «лямбда-член» возникнет как константа интегрирования. Уже на этом уровне мы опять будем иметь уравнение Эйнштейна с «лямбда-членом», но он может быть каким угодно – просто постоянной величиной. На основании этого происходят разные спекуляции. Вот, мол, как понять, почему «лямбда-член» действительно мал сейчас…

В.Л. Я перебью. В начале мы говорили о каких-то классических вещах. Александр Николаевич и я, мы стоим на классических позициях в смысле понимания гравитации и так далее. Но вот сейчас мы начинаем говорить уже о неких гипотезах, поскольку «лямбда-член», его значение в современной физике, или, говоря современным языком, просто энергия вакуума космического, энергия пустоты, отсутствие пустоты в природе – это сейчас только начинает осмысливаться в связи со старыми геометрическими идеями. И вот то, что сейчас Александр Николаевич говорит, он обращает внимание на то, что в последние годы появилось… Ведь смотрите, если «лямбда-член» есть, то возникает вопрос: вообще откуда он берётся? В теории относительности это просто константа, которую она допускает просто геометрически, умозрительно. Эйнштейну не нужен был эксперимент. Он пользовался простыми мысленными экспериментами. И он пришёл к идее общей теории относительности, внутри которой была заложена идея отсутствия пустоты, энергии пустоты. И то, что мы сейчас возвращаемся из очень простых принципов к идее отсутствия пустоты, сейчас заставляет нас уже ставить новый вопрос: а почему «лямбда-член» таков, каким мы его сейчас видим? И вот здесь ряд очень новых, интересных идей может быть.