Невероятно - не факт | страница 41



Особое место занимают в статистике измерения средних значений и отклонений от средних. Весьма распространены измерения роста и веса. Вес цыплят, которыми торгует птицеферма, интересен потому, что характеризует ее работу; рост людей интересен для швейной промышленности, выпускающей одежду ог 46-го до 56-го размеров, и т.д. Так как все это известно читателю из газет и радиопередач, приводящих всевозможные числа, то перейдем к нашей теме, а именно, к проявлению во всей этой массе чисел законов случая.

Один из скучных рисунков, фигурирующих в сочинениях по статистике, нам придется привести. Мы с художником долго ломали голову над тем, как сделать это масштабное построение более приемлемым в книге серии «Эврика». Результат творчества изображен на странице 71 [ссылка]. Рисунок показывает диаграмму и кривую, которая носит название кривой статистического распределения.

Чтобы рисунок лучше рассмотреть, поверните, пожалуйста, книжку на 90 градусов. Правда, новобранцы очутились в лежачем положении. Но, ей-богу, ничего более толкового не придумаешь. Теперь (в повернутом положении) высота кривой показывает число будущих солдат определенного роста. Величины роста нанесены на уровне носа. Выбран конкретный пример измерения роста 1375 ребят. Столбики – это результат измерения, а плавная линия – наиболее близкая к опыту – гауссова кривая.

Статистикам известна следующая замечательная вещь: чем больше привлеченный для построения графика материал (в данном случае чем больше ребят), тем плавнее и ближе к теории кривая, соединяющая вершины масштабных столбиков.

Самым замечательным обстоятельством является то, что кривая, получающаяся при измерении любых объектов, имеет форму той же самой кривой Гаусса, на которую, как мы видели, ложатся числа комбинаций «красного» и «черного»!

Теперь рассмотрим вид кривой нормального распределения в деталях. Нормальная кривая примерно похожа на колокол; она спадает одинаково в обе стороны сначала медленно, а потом быстро. Чтобы построить ее, математику достаточно знать три параметра: высоту ее максимума, среднее значение изучаемой величины (то есть то место на горизонтальной оси, которое соответствует среднему значению) и ширину кривой. Вершине колокола как раз и соответствует то, что мы называем средней величиной. (Как получить среднее, известно даже тем, кто враждует с арифметикой: надо сложить все измерения и разделить на число измерений.) Откуда же видно, что максимум кривой Гаусса придется на среднюю величину? Доказательство легкое: нужно проинтегрировать гауссову кривую. Но так как это занятие здесь неуместно, то просим поверить на слово, что теорема доказывается совсем просто.