Тунгусский и Челябинский метеориты. Научные мифологемы | страница 82



1) возрастание крупномасштабных полей в облаке;

2) появление локальных областей сильных электрических полей в облаке с повышенной фоновой ионизацией;

3) распространение через области сильного поля электрического тока, достаточного для формирования горячего, полностью ионизованного канала лидера молнии.

Эксперименты [130] показали, что скорость плазмы катодного факела (ν) слабо зависит от приложенного напряжения, практически не меняется во времени и составляет: ~30 км/с для Αl, ~20 км/с для W, Мо и Сu, ~ 10 км/с для Рb. Видна тенденция: скорость плазмы увеличивается с уменьшением атомной массы химических элементов. Молнию в атмосфере можно рассматривать как электрический пробой между зарядами плазмоида и "болида". Электрический пробой и дуговой разряд возникают при критическом расстоянии между вытянутыми навстречу полярными поверхностями. Концепция стримера в молнии рассматривается как волна ионизации, сформированная на первой стадии этих процессов. После создания проводящего канала по всему телу плазмы распространяется ток, вызывая интенсивное свечение. Эта стадия характеризуется высокой скоростью распространения тока вплоть до 100 км/с [98], т. е. порядка дрейфовой скорости электронов в воздухе при рассматриваемых электрических полях.

Большинство плазменных явлений, наблюдаемых в экспериментах, объясняют с помощью модели, подобной той, что используется в гидродинамике. Типичная для плазмы плотность составляет 10>12 электрон-ионных пар в 1 см>3 [93. С. 61]. В теории пренебрегают отличиями отдельных частиц и рассматривают движение элементов только объема жидкости. В гидродинамическом приближении считается, что плазма состоит из двух или более взаимопроникающих жидкостей, каждая из которых соответствует определенному сорту частиц. Ионная и электронная компоненты взаимодействуют друг с другом даже в отсутствие столкновений через генерируемые ими поля Е и В. Поляризация единицы объема вещества (Р) равна сумме всех отдельных моментов электрических диполей (р>i). Полярные заряды частиц образуют внутреннее поле плазмоида. Вектор напряженности (Е) этого поля направлен встречно внешнему полю и ослабляет его. Поляризация диэлектрика приводит к возникновению в нем связанного заряда.

Идея взрыва плазменных структур не нова. В монографии [18] рассматривают плазменную модель Тунгусского "болида" солнечного происхождения. Авторы гелиофизической гипотезы предположили, что Солнце может выбрасывать плазмоиды размеров порядка километра. Такие объекты могли бы объяснить причину детонации некоторых болидов, не оставляющих материальных следов, подобно Чулымскому болиду, взорвавшемуся 26 февраля 1984 года над Томской областью. Известны и другие подобные примеры. Гипотеза снимает парадокс отсутствия вещества в районе падения метеорита, но существование такого класса космических тел астрономами не установлено. Неочевидно и количество выделенной энергии крупного плазменного тела, движущегося с космической скоростью и незамеченного в атмосфере до последних минут.