Тунгусский и Челябинский метеориты. Научные мифологемы | страница 148



Энергия ионизации (Е>i) молекулы метана, определенная экспериментально, равна Е>i = 12,62 ± 0,20 эВ. Ионизация молекул метана линейно возрастает в интервале энергий Е>i = 12,62 до Е>i = 20 эВ, далее наступает насыщение. Ионизация молекул метана электронами, в зависимости от энергии, приводит к большому разнообразию возможных реакций: с образованием ионных пар, фрагментных ионов и нейтральных осколков [222]. Положительные ионные заряды метана, движутся сверху вниз по пласту газа по крыльям антиклинальных складок в направлении отрицательного заряда, созданного в земной коре искусственно. Вполне реальна такая ситуация, когда положительные ионы углеводорода и/или водорода окончательно становятся нейтральными вблизи электропроводящего горизонтального слоя на глубине 10–30 км. Ионы углеводородов в условиях больших температур и давлений в процессе восстановления могут превращаться в более сложные соединения атомов водорода и углерода.

Разложение молекул углеводородных газов и водных растворов в пластовых залежах на составляющие элементы под действием ГЭЦ, способствует образованию взрывоопасных газов в разных слоях земной коры. Создаются условия для подготовки мощного взрыва в районах, где применяют технологию нагнетания воды в отрабатываемые углеводородные пласты. Взрывоопасные газы с наибольшей концентрацией воспламенения: метан 40,8%, пропан 4,2%, бутан 3,2%, этан 5,9%, водород (3%). Концентрационные пределы распространения пламени в горючих газах [225]: метан (СН>4) – 4–14%, этан (С>2Н>3) – 2,5–15,5%, пропан (С>3Н>8) – 1,7–10,9%, бутан (С>4Н>10) – 1,4–9,3%, водород (Н>2) – 4–77%, ацетилен (С>2Н>2) –2,3–100%. Они имеют следующие концентрации наибольшей опасности воспламенения [226]: метан – 8,2%, этан – 5,9%, пропан – 4,2%, бутан – 3,2%, водород – 27%, ацетилен – 3%. Прохождение тока через взрывоопасную смесь, в условиях высокой температуры газов и ионов, с высокой степенью вероятности вызовет воспламенение и взрыв. Ионному (электронному) току было несложно воспламенить скопившийся горючий газ, чтобы инициировать глубинный взрыв и землетрясение в поселке Нефтегорск или Газли, удаленных от месторождений. Выделение энергии в очаге (очагах) взрыва обусловлено местоположением, физико-механическими свойствами пород, залегающими в кровле над скопившимися газами, формой и объемом газа, его химическим составом, давлением, плотностью, температурой среды и другими геофизическими условиями. Очаг землетрясения в Нефтегорске располагался на глубине 9 км. Вероятно, на этой глубине находился центр скопившихся газов.