Сила сознания | страница 40
Был открыт корпускулярно-волновой дуализм. Доказывающий, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других – свойства классических частиц[35]. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[36].
Свет можно трактовать и как поток частиц – фотонов, и как волну. Свет демонстрирует свойства волны в явлениях дифракции и интерференции. Но более того, даже одиночные фотоны (частицы), проходящие через двойную щель, создают на экране интерференционную картину, свойственную только волновому поведению[37]. Квантовое волновое поведение проявляют не только элементарные частицы, но и более крупные объекты – молекулы. В 2019 году удалось добиться дифракции молекул, состоящих из почти 2000 атомов каждая[38]. То есть целые большие молекулы, «кирпичики» материальной вселенной, также могут вести себя как нематериальные волны. Это удивительно. Но есть нечто более невообразимое.
Двухщелевой опыт. Впервые был проведён Томасом Юнгом и впоследствии многократно повторён. Суть его была в следующем. Лазерный луч освещает пластину с двумя параллельными щелями, и свет, проходящий через щели, наблюдают на экране за пластиной. Волновая природа света вызывает явление интерференции, что проявляется на экране как чередующиеся светлые и тёмные полосы. Подобного бы не могло произойти, если предположить, что свет – это поток частиц. Ибо частицы летят только по прямой. И если бы свет был потоком частиц, то фотоны, пройдя через две щели, на экране сформировали бы две яркие точки (а не волновую картину). Тут всё понятно. Свет – это волна. Хотя всегда обнаруживается, что свет попадает на экран в виде отдельных точек (фотонов), а волновая картина (с чередующимися полосами) появляется из-за изменяющейся плотности попадания этих частиц на экран. Предположили, что в процессе полёта свет является волной, но, как только контактирует с экраном, становится частицей – фотоном. В таком случае один фотон должен проходить через обе щели одновременно (как волна) и лишь потом вновь «собираться» в одну частицу, попадающую на экран и формирующую волновой интерференционный рисунок. Совсем уж невероятно.
Тогда учёные провели другой эксперимент, чтобы понять, может ли один фотон пройти сразу через две щели одновременно. Они стали выпускать по одному фотону и решили