Применение искусственного интеллекта в цифровой экономике | страница 28



Применение в экологических проектах различных видов нейронных сетей в алгоритмах искусственного интеллекта зависит от того, какая цель ставится перед реализацией проекта: обобщение, оптимизация, управление, прогностика, редукция баз данных и т.д. В текущий момент времени в экопроектах применяются, как правило, два распространенных типа нейронных сетей:

1)

многослойная нейронная сеть, в которой каждый нейрон одного слоя связан со всеми нейронами последующего, и каждой такой связи прописан соответствующий вес (вектор весов). Количество входящего и выходящего слоев обусловлено спецификой выбора объекта исследования. Основной принцип обучения заключается в сопоставлении огромного массива статистических данных в целях уменьшения и исправления возможных ошибок за счет корректировки весов (векторов) нейронов;

2)

двухслойная нейронная сеть – это комбинация входящего и выходящего слоев нейронов. Каждый нейрон связан с соседними нейронами. Вес связей соответствует входящим значениям.

В проектах «Smart-экология» современные возможности искусственного интеллекта позволяют осуществлять экологический мониторинг, формировать и хранить гигантские массивы данных, выявлять и анализировать закономерности в состоянии окружающей среды. Следует отметить, что такие массивы данных характеризуются неполными, противоречивыми и не всегда корректными исходными данными. В этой связи указанные закономерности характеризуются нелинейностью, нечеткостью и высоким уровнем неопределенности, что существенно затрудняет оценку экологической обстановки. Поэтому одним из наиболее перспективных направлений использования технологий ИИ в smart-экологии признается распознавание и прогнозирование экологической ситуации на основе алгоритмов нейронных сетей.

Особенно сложно формировать базы данных об аварийных ситуациях, связанных с опасностью выброса в атмосферу отслеживаемых вредных веществ или создание таких экологически неблагоприятных сооружений, как техногенные отвалы, характеризующиеся такими негативными проявлениями, как пылевые выбросы, просадки и оползни, ветровая и водная эрозии, риски самовозгорания.

Следует отметить, что применяемые до сих пор в России способы возведения таких отвалов, занимающих огромные территории, в частности в теплоэнергетике, необходимо срочно пересматривать, изучать и внедрять зарубежную практику переработки содержащих компонентов таких отвалов, позволяющую извлекать и использовать в дальнейшем полезные компоненты. К примеру, из 1 тонны угля, в зависимости от технологического оборудования, условий подготовки топлива и конкретных режимов сжигания образуется от 140 до 25 кг твердой золы [60]. Зольность – это минеральное сырье, богатое оксидом алюминия (15–25%), закисью железа (6–15%) и оксидом кремния (40–60%). Он также содержит в качестве микродобавок 50 элементов периодической таблицы Менделеева [15].