Вместо тысячи солнц. История ядерной бомбы, рассказанная ее создателями | страница 86
Таким путем безошибочная интуиция Эйнштейна привела его шаг за шагом к выводу, что всякий излучательный процесс состоит из испускания или поглощения индивидуальных световых квантов или «фотонов» с энергией и количеством движения
E = h>ν и, P = h>σ, (1)
причем h есть постоянная Планка, тогда как v есть число колебаний в единицу времени, а σ – число волн на единицу длины. Представление о фотоне, при всей его плодотворности, выдвинуло совершенно непредусмотренную дилемму, поскольку всякая простая корпускулярная картина излучения явно несовместима с явлениями интерференции, которые представляют важную особенность процессов излучения и могут быть описаны только при помощи волновой картины. Острота дилеммы подчеркивается тем фактом, что интерференционные явления – это единственное средство для определения тех самых понятий частоты и длины волны, которые входят в соотношения для энергии и количества движения фотона.
При таком положении вещей не могло быть и речи о попытке причинного анализа явлений излучения; дело могло идти только о том, чтобы путем комбинированного применения противоположных картин вычислять вероятности отдельных актов излучения. Здесь очень важно полностью отдавать себе отчет в том, что при таких обстоятельствах привлечение законов вероятностей преследует существенно другие цели, чем обычное применение статистических соображений в качестве практического способа объяснения свойств механических систем с весьма сложной структурой. В самом деле, в квантовой физике дело не в такого рода сложности, а в непригодности классической системы представлений для передачи своеобразных черт неделимости или «индивидуальности», характеризующих элементарные процессы.
Непригодность теорий классической физики для объяснения атомных процессов все яснее выявлялась по мере нашего ознакомления со строением атомов. Прежде всего, открытие Резерфордом атомного ядра (1911) одним ударом вскрыло непригодность классических представлений механики и электродинамики для объяснения свойственной атому стабильности. И здесь теория квантов снова дала ключ к выяснению положения вещей; в частности, появилась возможность объяснить как стабильность атомов, так и эмпирические законы, которым подчиняются спектры элементов. В основе этого объяснения лежит предположение о том, что всякая реакция атома, ведущая к изменению его энергии, включает в себя полный переход атома от одного так называемого стационарного квантового состояния к другому и что, в частности, спектры испускаются ступенчатым процессом, причем каждый переход сопровождается испусканием монохроматического кванта света, энергия которого в точности равна энергии эйнштейновского фотона.