Вместо тысячи солнц. История ядерной бомбы, рассказанная ее создателями | страница 44
Если направить на металлическую поверхность не слишком красный свет, то электроны, находящиеся в металле, будут вылетать из него. В лаборатории было открыто довольно странное явление: если, например, удвоить интенсивность света, то это повлияет не на скорость электронов, а на их число. Конечно, если мыслить свет как электромагнитную волну, интенсивность которой возрастает, то можно ожидать, что на электроны будет оказано более сильное воздействие. Однако ничего подобного не происходит. Энергия электронов не зависит от интенсивности света, а связана с его частотой и постоянной Планка весьма простым соотношением
E = hv − В.
Здесь световая энергия hv – та же энергия, которую Планк ввел пятью годами раньше; Е – кинетическая энергия вырванного из металла электрона; величина В не является фундаментальной и равна той работе, которую необходимо затратить, чтобы выбить электрон из металла. Эта формула получила очень точное и изящное подтверждение. И Эйнштейн сказал: «Это решает дело. Совершенно очевидно, что существуют кванты энергии света». Свет поглощается порциями, кратными hv, после чего энергия просто уносится электроном, – а это и есть объяснение формулы.
Но это открытие, разумеется, не упразднило опыт, накопленный за целое столетие изучения волновых явлений. С помощью интерферометров, призм, микроскопов и радиоволн ученые продолжали изучать свет как явление распространения волн. С другой стороны, возникло представление о прерывной структуре света, о световой частице (по крайней мере по отношению к явлениям поглощения и излучения света), и от этого нельзя было отмахнуться. Более того, оно даже подтвердилось экспериментами с чрезвычайно жестким излучением, а именно с рентгеновским. В самом деле, сталкиваясь с электронами, рентгеновское излучение ведет себя так, как если бы у него была энергия, определяемая соотношением E = hv, и импульс p = h/λ, равный той же самой постоянной h, деленной на длину волны. Таким образом, наблюдалось, что при столкновении с электроном свет ведет себя как частица, которая обладает импульсом и энергией, связанными этими простыми соотношениями с его частотой и длиной волны; эти соотношения, в свою очередь, согласуются с правилами взаимосвязи энергии и количества движения электромагнитной волны, но, включая постоянную h, подразумевают дискретную передачу энергии и импульса электрону при соударении с ним света. Указанный эксперимент, получивший название эффекта Комптона, привел в 1923 году к решающему заключению о двойственной природе света.