«Наука и Техника» [журнал для перспективной молодежи], 2006 № 04 (4) | страница 42



Детально изучив с помощью приборов падение газа в дыру, вы готовитесь к спуску в окрестности ее горизонта: организуете лазерную связь между спускаемыми аппаратами и компьютером звездолета, после чего выводите спускаемый аппарат из отсека звездолета и постепенно замедляете его, переводя на спиральную орбиту, приближающуюся к горизонту.

Все происходит в соответствии с вашими ожиданиями, до тех пор пока вы не достигли орбиты длиной 5 млн 500 тыс. км — втрое превышающей длину горизонта. Здесь возникают пугающие перемены! Плавное управление двигателями вместо плавного изменения вашей орбиты приводит к губительному падению по направлению к горизонту. В панике вы разворачиваете аппарат и, резко форсируя двигатели, вновь поднимаетесь на орбиту длиной больше 5 млн 500 тыс. км.

«В чем, черт побери, была ошибка?» — обращаетесь вы по лазерной связи к компьютеру звездолета.

«Тише, тише, — успокаивает он. — Вы рассчитывали вашу орбиту, используя законы Кеплера, основанные на законе всемирного тяготения Ньютона. Но этот закон нарушается вблизи горизонта черной дыры и должен быть заменен законами ОТО Эйнштейна. А законы Эйнштейна предсказывают внезапное изменение круговых орбит там, где вы это испытали, — на орбите, длина которой втрое больше длины горизонта. Ниже все орбиты неустойчивы, как карандаш, поставленный на острие. Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата. Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я. Если хотите, я сохраню устойчивость L орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо».

«Проклятый компьютер! — бормочите вы про себя. — Он всегда отвечает на мои вопросы, но никогда сам не предложит необходимую информацию, не предупредит, когда я собираюсь поступить неверно».

Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад. Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости.