Психология процесса изобретения в математике | страница 91
Может вызвать удивление обращение к чувствам, когда речь идёт о математических доказательствах, которые, казалось бы, связаны только с умом. Но это означало бы, что мы забываем о чувстве математической красоты, гармонии чисел и форм, геометрической выразительности. Это настоящее эстетическое чувство, знакомое всем настоящим математикам. Воистину, здесь налицо чувство!
Но каковы математические характеристики, которым мы приписываем свойства красоты и изящества и которые способны возбудить в нас своего рода эстетическое чувство? Это те элементы, которые гармонически расположены таким образом, что ум без усилия может их охватывать целиком, угадывая детали. Эта гармония служит одновременно удовлетворением наших эстетических чувств и помощью для ума, она его поддерживает и ею он руководствуется. Эта гармония даёт нам возможность предчувствовать математический закон. Итак, как это было сказано выше, единственными фактами, способными обратить на себя наше внимание и быть полезными, являются те, которые подводят нас к познанию математического закона. Таким образом, мы приходим к следующему выводу: полезные комбинации — это в точности наиболее красивые, т. е. те, которые больше всего воздействуют на это специальное чувство математической красоты, известное всем математикам и недоступное профанам до такой степени, что они часто склонны смеяться над ним.
Что же, таким образом, происходит? Среди многочисленных комбинаций, образованных нашим подсознанием, большинство безынтересно и бесполезно, но потому они и не способны подействовать на наше эстетическое чувство; они никогда не будут нами осознаны; только некоторые являются гармоничными и потому одновременно красивыми и полезными; они способны возбудить нашу специальную геометрическую интуицию, которая привлечёт к ним наше внимание и таким образом даст им возможность стать осознанными.
Это только гипотеза, но есть наблюдение, которое её подтверждает: внезапное озарение, происходящее в уме математика, почти никогда его не обманывает, но иногда случается, что оно не выдерживает проверки, и тем не менее почти всегда замечают, что если бы эта ложная идея оказалась верной, то она удовлетворила бы наше естественное чувство математического изящества.
Таким образом, это специальное эстетическое чувство играет роль решета, и этим объясняется, почему тот, кто лишён его, никогда не станет настоящим изобретателем.
Однако, преодолены не все трудности; ясно, что пределы сознания очень узки, а что касается подсознания, то его пределов мы не знаем и потому не слишком возражаем против предположения, что оно может образовать в короткое время столько комбинаций, сколько сознательное существо не смогло бы рассмотреть за всю жизнь. Эти пределы тем не менее существуют, но правдоподобно предположить, что подсознание могло бы образовать все возможные комбинации, число которых испугало бы воображение, и это кажется и необходимым, так как если бы оно образовывало их мало и делало бы это случайным образом, то маловероятно, чтобы «хорошая» комбинация, которую надо выбрать, находилась среди них.