Дирак. Антивещество | страница 10
Из постулатов Эйнштейна следует, что измеряемое время может замедляться в движущихся инерциальных системах; иначе говоря, оно течет быстрее, когда мы измеряем его в той же системе отсчета, в которой и находимся (в «собственной» системе). Наконец, и длина предмета зависит от системы, в которой он измеряется, поскольку определить длину означает определить одновременно края этого предмета. Эйнштейн осуществил множество «мысленных экспериментов», чтобы данный аспект стал очевидным. И если релятивистские эффекты — сокращение длины и замедление времени — незаметны в повседневном мире, для которого механика Ньютона является достаточно точной, то они играют ключевую роль в объяснении субатомных процессов.
Еще один важный принцип, следовавший из теории относительности и оказавший серьезное влияние на квантовую теорию, — принцип эквивалентности массы и энергии. В релятивистской теории масса тела зависит от системы отсчета, она увеличивается вместе со скоростью и тяготеет к бесконечности, когда скорость тела приближается к скорости света. Соотношение между массой и общей энергией тела выражается знаменитым уравнением Эйнштейна: Е = mc>2. Оно описывает эквивалентность массы и энергии и означает, что излучение или взаимодействие, то есть энергия, могут переходить в массу (в частицы), и наоборот, что частицы (масса) могут разрушаться, производя энергию. Это уравнение сыграло огромную роль
Дирак в учебной аудитории.
Поль Дирак (четвертый слева) с коллегами во время VII Сольвеевского конгресса, который был организован в 1933 году и посвящен структуре и свойствам атомного ядра. в открытии взаимодействия излучения с веществом в рамках квантовой теории. Дирак стал первым ученым, сумевшим логично соединить релятивистскую теорию с квантовой моделью. Постулирование неинерциальных систем отсчетов привело Эйнштейна к разработке общей теории относительности, он опубликовал ее в 1916 году.
Время, в которое происходит какое-либо событие, так же как и длина предмета, зависят от инерциальной системы отсчета, в которой они измеряются. В свете теории относительности эти эффекты выражаются следующими уравнениями:
Δt = γΔt>0; L = L>0/γ
где Δt>0 и L>0 означают измеряемые время и длину в движущейся системе отсчета, а Δt и L показатели, измеряемые в неподвижной системе. Член уравнений у, называемый «фактором Лоренца», выражается так:
γ = 1/(√(1-(v/c)2)
В обычной жизни скорость предметов (V) слишком мала по отношению к скорости света (с). В этой ситуации фактор Лоренца практически равен 1. Таким образом, нет никакой разницы между длиной или временным интервалом, измеряемыми разными наблюдателями. Принципиально иная ситуация наблюдается в субатомном мире, где скорости сопоставимы со скоростью света. Фактор у там значительно больше 1, что влечет за собой растяжение времени (Δt > Δt