Физика для всех. Книга 4. Фотоны и ядра | страница 34
n = c/v.
где с — принятое обозначение скорости света в пустоте, a v — скорость распространения в среде. Ну, а дальше? Какой из двух параметров — частота или длина волны — меняется при переходе света из воздуха в среду? Чтобы объяснить результаты интерференционных опытов, необходимо предположить, что частота фотона остается неизменной, а длина волны меняется. Поэтому для показателя преломления справедлива также формула
n = λ>0/λ,
где λ>0— длина волны в воздухе.
Вот теперь мы уже знаем всё, для того чтобы записать разность фаз между лучами в описываемом опыте с пластинкой. Поскольку один из лучей шел в воздухе, а второй — в стекле, то разность фаз будет равна
Что же можно измерить, изучая интерференцию лучей в пластинке? Формула отвечает на этот вопрос. Если известна толщина, то можно определить показатель преломления материала. Если известно значение n, то можно с очень большой точностью (доли длины световой волны) найти толщину, и, наконец, можно измерять длины волн разной «цветности».
Если пластинка имеет переменную толщину, материал ее всюду однороден и угол падения практически одинаков для рассматриваемого участка пластинки, то интерференция будет обнаружена в виде так называемых полос равной толщины. На неровной пластинке возникнет система темных и светлых (или радужных в случае белого света — ведь фотон каждой цветности будет вести себя по-своему) полос, обрисовывающих места равной толщины. В этом состоит объяснение цветных разводов, которые мы так часто видим на пленках нефти или масла, разлитых на воде.
Очень красивые полосы равной толщины легко наблюдать на мыльной пленке. Сделайте проволочную рамку. Опустите ее в мыльный раствор и выньте. Мыло стекает, и в верхней части пленка будет тоньше, чем в нижней. На пленке появятся цветные горизонтальные полосы.
Интерференционный метод широко применяется для измерения малых расстояний или малых изменений расстояний. Он позволяет заметить изменения толщины, меньшие сотых долей длины световой волны. В интерференционных измерениях неровностей на поверхности кристалла удается достигнуть точности порядка 10>-7 см.
Широко распространен этот метод в оптической промышленности. Если, скажем, нужно проверить качество поверхности стеклянной пластинки, то это делается рассмотрением полос равной толщины воздушного клина, создаваемого испытуемой пластинкой с идеально плоской поверхностью. Если прижать эти две пластинки с одного края, то образуется воздушный клин. Если обе поверхности плоские, то линии равной толщины будут параллельными прямыми.