Рассказы о математике | страница 39



[ 0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ] +

[ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]]


Следующий код выводить на экран цифру, и значения параметров выходного слоя:

for digit in t:

printDigit(digit)


mlp.forwardPass(digit)

mlp.printOutput()


Результат весьма интересен:

[0.019443, 0.0102247, 0.0091067, 0.467039, 0.0000103, 0.0150096, 0.0008709, 0.0004573, 0.655264, 0.0867915]


На тренировочных значениях сеть должна была выдавать “1” в том разряде, который соответствует “загаданному” числу. И хотя нигде явным образом это не планировалось и специально не программировалось, сеть выдала максимальные значения в тех разрядах массива, где “по ее мнению”, степень схожести максимальна. Как можно видеть, эти разряды соответствуют числам “3” и “8”, что визуально действительно похоже на нарисованное число. Строго говоря, результат не совсем верный, картинка больше похожа на “3” чем на ”8”, но и тренировка не была закончена полностью.


Для следующего теста число нейронов было увеличено до 128, а количество итераций обучения было увеличено до 75000.

Результаты теста на том же массиве:

[0.0044085, 0.219943, 0.0118179, 0.816858, 0.0002372, 0.06267359, 0.0008674, 0.00020319, 0.55439027, 0.00061541]


Максимальное значение теперь действительно соответствует числу “3”, можно сказать что сеть работает как задумывалось.


Для тех кто захочет поэкспериментировать самостоятельно, исходный текст программы и база чисел MNIST находятся в архиве, ссылка на который есть в начале книги.


21. Приложение 1 - Вычисления с помощью видеокарты

Еще 20 лет назад, во времена процессоров 80386, пользователям приходилось покупать математический сопроцессор, позволяющий быстрее выполнять вычисления с плавающей точкой. Сейчас такой сопроцессор покупать уже не надо - благодаря прогрессу в игровой индустрии, даже встроенная видеокарта компьютера имеет весьма неплохую вычислительную мощность. Например, даже бюджетный видеочип Intel Graphics 4600 имеет 20 вычислительных блоков, что превышает количество ядер “основного” процессора. Разумеется, каждое ядро GPU по отдельности слабее CPU, но здесь как раз тот случай, когда количество дает преимущество над качеством. Вычисления с помощью GPU сейчас очень популярны - от майнинга биткоинов до научных расчетов, диапазон ценовых решений также различен, от “бесплатной” встроенной видеокарты до NVIDIA Tesla ценой более 100тыс рублей. Поэтому интересно посмотреть, как же это работает.