Хаббл. Расширение Вселенной | страница 74
Кроме функции a(t) нам интересно знать, как менялась плотность Вселенной. Мы представим это изменение только для критической Вселенной Эйнштейна — де Ситтера, так как именно она лучше всего соответствует современным данным (и современные теории инфляции для первоначального времени подтверждают ее). На рисунке 8 представлена плотность в зависимости от времени критической вселенной, р(t) α t>2, и соответствующая эпохе темной энергии.
Также для полноты картины, не претендуя на реальное описание (поскольку это не является темой нашей книги), рассмотрим, как менялась температура Вселенной. На рисунке 9 представлена T(t). Примерно для z < 10>-10 Вселенная в основном содержала нейтрино, электроны, позитроны и фотоны. Обычная материя (барионы, такие как протоны и нейтроны)
и темная материя присутствовали, но в меньшем количестве.
РИС. 7 Изменение функции Хаббла в критической Вселенной Эйнштейна — де Ситтера и во Вселенной де Ситтера. t>0 — настоящее время.
РИС. 8 Схема варьирования плотности.
Все частицы находились в термическом равновесии. Тогда пары нейтрино распались, позитроны и электроны взаимно уничтожили друг друга, что увеличило температуру фотонов и материи. Затем распались пары фотонов. Температура барионов поднялась до критических значений, сформировались первые звезды. Все это происходило относительно недавно, в эпоху, называемую реионизацией.
РИС. 9 Изменение температуры. Температуры фотонов, барионов и нейтрино менялись по-разному.
В 1932 году Хаббл предложил изучать распределение туманностей в пространстве. Для этого он использовал 60- и 100-дюймовые телескопы, а также 36-дюймовый телескоп Ликской обсерватории на Маунт-Хамильтоне. Над этой базовой проблемой космологии работал студент Хаббла Ник Майал. Он искал ответы на вопросы: гомогенно ли распределение туманностей? изотропно ли оно?
Говоря «гомогенное распределение», мы хотим сказать, что плотность галактик одинакова в любой точке Вселенной; все точки пространства Вселенной в этом смысле равноправны.
Говоря «изотропное распределение», мы хотим сказать, что плотность галактик одинакова в любом направлении, которое мы наблюдаем; все направления эквивалентны. При этом можно доказать, что изотропия подразумевает гомогенность, но не наоборот. Гомогенность не подразумевает изотропии.
Однако одинаковая плотность галактик во всех точках Вселенной представляет собой огромную проблему. Нужно брать за точку отсчета очень крупные структуры, содержащие статистически большое количество галактик, а затем считать галактики в них. Основная трудность, особенно в те времена, состояла в том, что расстояния не были известны с абсолютной точностью,— это касалось в первую очередь галактик, для которых был неприменим метод цефеид. Для подтверждения гомогенности Вселенной требуется очень много наблюдений. Мы можем изучать статистическое распределение потоков туманностей, наблюдаемых здесь, на Земле. Функция статистического распределения — особая функция при гомогенной Вселенной. (Можно доказать, что количество галактик со звездной величиной m пропорционально 10