Хаббл. Расширение Вселенной | страница 68



Это сложно понять человеку, не стоящему на релятивистских принципах, поэтому популяризаторы науки прибегают к следующему сравнению, которое использовал и Хаббл.


Прошедшее время конечно, будущее время бесконечно.

Эдвин Хаббл в своей книге «Наблюдательный подход к космологии» (1937)


Представим себе двумерных существ, а не трехмерных, как мы. Они живут не в плоском двумерном пространстве, а на сферической поверхности, то есть в искривленном пространстве. Сферическая поверхность — это вся их Вселенная, они не понимают, что можно выйти за ее пределы или переместиться в ее центр. Для них Вселенная конечна, потому что они могут переместиться в любую ее точку за конечный отрезок времени, но они не могут достичь края Вселенной, потому что, сколько бы они ни шли, они не могут обнаружить линию, определяющую границы Вселенной. Если применить эту концепцию к трехмерному миру, мы приблизительно поймем, что представлял себе Эйнштейн до того, как применил свои уравнения ко всей Вселенной. Согласно его преставлениям, если бы мы запустили луч света прямо, то из-за кривизны пространства он, пройдя свой путь, вернулся бы к нашему затылку.

Так относительность позволяла совместить космологический принцип и пространственные пределы Вселенной. Относительность делала возможным союз философии Аристотеля с физикой.

Космологический принцип прекрасен. Но... верен ли он?

Этот принцип позволяет изобретать прекрасные теории, однако совместим ли он с наблюдениями? И здесь ключевой фигурой становился такой наблюдатель, как Хаббл. Принцип не нужно доказывать, но он должен подтверждаться наблюдениями.

Однако прежде чем поговорить о Хаббле с его 100-дюймовым телескопом, представим, как мы тихонько пробираемся в кабинет Эйнштейна и наблюдаем за его работой. Вот ученый записывает формулы. Что это за формулы? Вначале он предложил уравнения, которые показались ему самыми простыми. Но эта попытка оказалась неудачной: согласно этим уравнениям Вселенная... расширяется. Но этого не может быть, это абсурдно: Вселенная должна быть статичной. Тогда Эйнштейн меняет свои уравнения, добавляя к ним еще одну переменную — космологическую постоянную А. Эта константа объясняла расширение Вселенной, без которого самогравитация заставила бы Вселенную коллапсировать, стянуться в одну точку, что было равнозначно ее разрушению.

С помощью этой небольшой хитрости ученый достиг своей цели. Воспользовавшись космологической постоянной, Эйнштейн представил нам модель Вселенной, которая была статичной (не двигалась), стационарной (неизменной) и конечной в пространстве. Эту космологическую постоянную сегодня можно было бы назвать темной энергией, так что можно сказать, что понятие темной энергии было введено еще Эйнштейном.