Кантор. Бесконечность в математике. | страница 46
РИС.1
РИС. 2
РИС. 3
В начале XIX века французский математик Жозеф Фурье (1768-1830) разработал метод, который позволил ему записать любой график как сумму особых, при этом очень простых кривых, которые математически выражаются при помощи функций, названных тригонометрическими. Эти суммы, в свою очередь, обычно предполагают бесконечное (потенциально) количество кривых, и, так как в математике бесконечные суммы обычно называют рядами, этот метод сегодня известен как разложение на тригонометрические ряды, или ряды Фурье. Благодаря ему Фурье смог успешно изучить большое количество физических явлений, и он по-прежнему остается важным инструментом во многих областях математики, физики и инженерного дела.
Каков результат операции 1-1 + 1-1 + 1-..., которая продолжается бесконечно? Немецкий математик Готфрид Вильгельм фон Лейбниц (1646-1716) утверждал, что результатом этого «бесконечного вычисления» будет 1/2. Рассмотрим ход его рассуждений. Обозначим результат буквой S. Следовательно,
1-1 + 1-1 + 1-...=S
1-(1-1 + 1-1-...)=S.
Портрет Готфрида Вильгельма фон Лейбница, музей герцога Антона Ульриха в Брауншвейге (Германия), около 1700 года.
Поэтому результат выражения в скобках также будет равен S. Таким образом, получается, что 1 - S = S, откуда можно вывести, что S равно 1/2. Но мы можем сгруппировать члены выражения и по-другому:
1-1 + 1-1 + 1-.. . = (1-1)+(1-1)+(1-1)+... = 0 + 0 + 0+.. . = 0.
В этом случае мы получим 0. Или же мы можем сгруппировать так:
1-1 + 1-1 + 1-... = 1-(1-1)-(1-1)-... = 1-0-0-... = 1,
и результат будет равен 1. Какой же результат правильный: 1/2,0 или 1? Такие парадоксы мучили математиков на протяжении десятков лет, пока наконец в XIX веке не были выведены правила оперирования бесконечных сложений и вычитаний. На самом деле выражение 1-1+1-1+1-... не имеет никакого результата. Другими словами, предполагаемый результат на самом деле не существует. Рассуждения Лейбница неверны именно потому, что числа S нет.
В 1860-е годы в Галле Эдуард Гейне решил проверить, всегда ли будет одинаковым разложение такого периодического графика, как ряд Фурье. Другими словами, Гейне хотел узнать, может ли один периодический график быть записан в виде двух разных тригонометрических рядов.
Ему удалось доказать, что если в графике нет «скачков» или прерывностей, то он в самом деле будет иметь только один возможный вариант разложения. Но Гейне не нашел общего доказательства, которое было бы действительным для всех возможных ситуаций. Так, он не доказал единственность в случае, если в периоде — так называется классический постоянно повторяющийся график — бесконечное (потенциально) количество разрывов. Когда в 1869 году Кантор прибыл в Галле, Гейне предложил ему разобраться, будет ли разложение периодического графика всегда единственным, даже если количество «скачков» продолжит расти до бесконечности.