Кантор. Бесконечность в математике. | страница 36
Юлиус Вильгельм Рихард Дедекинд родился 6 октября 1831 года в Брауншвейге, Германия. С детства он проявлял огромный интерес к наукам и постепенно сконцентрировался именно на математике. В 1848 году поступил в Карловский коллегиум, где преподавание соответствовало университетскому уровню, поэтому Дедекинд получил солидное образование в области алгебры, аналитической геометрии и исчисления. Он дополнил его в Геттингенском университете, куда поступил в 1850 году. Два года спустя он получил там степень доктора под руководством самого Карла Фридриха Гаусса, одного из величайших математиков в истории.
В 1855 году Гаусс умер, и Дедекинду предложили занять его кафедру. В том же году он начал тесно сотрудничать с Бернхардом Риманом, еще одним учеником Гаусса. Через несколько лет Дедекинд решил вернуться в Брауншвейг и в 1862 году стал преподавать математику в том же знаменитом Карловском коллегиуме вплоть до 1894 года. Однако он не оставил занятия математикой и внес важный вклад в развитие науки, особенно в области алгебры и исчисления. Дедекинд всю жизнь был холостяком и, вернувшись в Брауншвейг, поселился со своей незамужней сестрой Юлией. Рихард Дедекинд умер в Брауншвейге 12 февраля 1916 года.
Суть его в том, что любая фигура, даже если она полностью ограничена кривыми, может быть разделена на два фрагмента или более (их количество всегда конечное), необязательно равные между собой, так, что каждый из них ограничивается отрезком (см. рисунок 9).
Задача вычислить площадь фигуры сводится, таким образом, к вычислению площадей каждого из этих фрагментов. Представим, что отрезок, частично ограничивающий фигуру, который мы для удобства назовем основой, является частью числовой оси, ограниченной числами а и b. Предположим, что мы знаем математическую формулу, которая позволяет нам вычислить длину отрезка, соединяющего точку X с кривой, если на основе задана точках. Назовем эту длину у (см. рисунок 10).
Метод заключается в том, чтобы представить фигуру как образованную бесконечными перпендикулярными отрезками, соединяющими основу с кривой (на каждое число х приходится один отрезок). Таким образом, площадь фигуры равна сумме площадей этих отрезков. И все же эта мысль отсылает нас к парадоксу Аристотеля.
Как математическая точка обладает длиной, равной нулю, так и математический отрезок (у которого есть длина, но нет ширины и глубины) обладает площадью, которая тоже равна нулю. Следовательно, если мы представим площадь фигуры как сумму площадей отрезков, она будет равна 0 + 0 + 0 +... = 0.