Кантор. Бесконечность в математике. | страница 25
- 3 = 0, но и уравнения третьей степени х>3 - х>2 - 3х + 3 = 0, и уравнения четвертой степени х>4 - 9 = 0, и уравнения пятой степени, и шестой и так далее. Однако √3 не является решением уравнений степени меньше 2, которое при этом удовлетворяет всем вышеуказанным условиям. Самая меньшая возможная степень для √3 — вторая, поэтому говорят, что √3 — это алгебраическое число степени 2. Другими алгебраическими числами степени 2 являются, например, √2 и
(1 + √5)/2,
(Другой стороны, можно доказать, что 3√2 — число степени 3, что √2 + √3 — число степени 4, и что все рациональные числа, как в случае с 7/5, являются алгебраическими числами степени 1. Итак, чтобы удалось построить отрезок с помощью линейки без делений и циркуля, его длина должна соответствовать алгебраическому числу, причем степени 1, 2, 4, 8,16 или любой другой, делящейся на 2. Поскольку π — не алгебраическое число, отрезок этой длины такими инструментами построить нельзя. Также нельзя построить отрезок длиной √2, поскольку, хотя это и алгебраическое число, его степень равна 3.
Он задумался о них еще в ходе первых исследований в Галле, и результаты работы привели его к тому, чтобы отнестись к ним серьезно. В 1883 году Кантор писал:
«К мысли о том, чтобы рассматривать бесконечно большое не только в форме безгранично возрастающего [...], но также закрепить его математически с помощью чисел в определенной форме завершенно бесконечного, я пришел почти против собственной воли и в противоречии с ценными для меня традициями, логически вынужденный к этому ходом многолетних научных усилий и попыток. Поэтому я не думаю, что могут найтись доводы, на которые я не сумел бы ответить».
Какие же исследования подтолкнули его допустить возможность существования актуальной бесконечности? Ответ на этот вопрос будет дан в следующей главе.
ГЛАВА З
Исчисление и бесконечность
Теория математической бесконечности постоянно бросает нам вызов, когда мы сталкиваемся с правильными, при этом полностью противоречащими здравому смыслу выводами.
В ее рамках доказывается, что целое не всегда больше любой составляющей его части, и приводятся примеры разных «уровней бесконечности». Эта теория тесно связана с областью математики, восходящей к классическому периоду Античности, — с исчислением.
Георг Кантор и Рихард Дедекинд познакомились случайно в 1872 году во время летних каникул. Несмотря на различия — Кантор был натурой страстной и импульсивной, а Дедекинд гораздо более спокойным и рассудительным,— они обнаружили много общего в своем видении математики. С этой встречи они почти десять лет вели очень интенсивную переписку, в ходе которой впервые обсудили идеи Кантора, впоследствии изложенные в его статьях. В письме от 5 января 1874 года, отправленном из Галле, Кантор спрашивал мнения Дедекинда по следующему вопросу: