Можно ли исчерпать энергию, которой питается сердце? | страница 3



При близком значении частот пульсации реагирующих атомов может возникнуть явление резонанса. Например, в молекулярном взаимодействии атома водорода с другими атомами, например, кислорода или азота, на колебания электрона водородного атома накладываются возмущающие пульсации реагирующих с ним атомов. В области частот пульсации других атомов, близких к частоте пульсации атома водорода, может возникнуть резкое возрастание амплитуд вынужденных пульсаций. То есть, электрон может выпрыгивать за пределы своей молекулы, общаясь с другими молекулами. Эти связи, обусловленные близостью частот пульсации атомных диполей реагирующих с водородом атомов, и есть водородные связи. Сравним частоты пульсации атома водорода 3,288, кислорода 3,292 и азота 3, 514 (Femto 1/s) — они действительно близки другу. Они особенно близки у кислорода с водородом, в основе чего лежит близость их энергий ионизации: 13,618 эВ и 13, 598 эВ, отличающихся всего лишь на 2 сотых эВ. Здесь объясняется само название атома водорода как такового, имеющего назначение рождать особую структуру воды (что справедливо только для Юпитерианского кислорода).

Основу жизнеспособности вещества определяет сродство к водороду других атомов — их водородная сила, которая проявляется по-разному и связана с характером звёздного синтеза, обусловливающим частоту пульсации диполей и энергию ионизации, сходных с атомом водорода. Именно атомы Юпитерианского происхождения имеют сродство к водороду. Возникновение водородных связей как особого вида связи между атомом водорода одной молекулы и другими атомами (кислорода, азота) соседних молекул является свойством атомов вещества, синтезированного Юпитером на основе атома водорода.

Сила водородной связи определяется частотой межмолекулярного взаимодействия-пульсации электрона, которая нами в работе [4] определена как в 20 раз более слабая, чем молекулярная. Поскольку водородные связи на порядок, а может быть и на два порядка слабее обычных молекулярных, значит электрон водородного диполя, например, в карбоксильной группе COOH, общается с атомом кислорода соседней молекулы значительно реже, чем с атомом кислорода своей молекулы, куда он «прыгает» с вероятностью взаимодействия на порядок большей. Межмолекулярные связи поглощают меньшую долю внутриатомного взаимодействия с эфиром, чем молекулярные, и функционально труднее обнаружимы. Их существование может быть обнаружено физическими методами, например, испытанием на разрыв друг от друга отдельных мышечных волокон. Так как же можно представить себе водородные связи в биологических тканях в физических понятиях? Не иначе, как в виде сверхслабых импульсных токов достаточно высокой частоты (электронных импульсов).