Эйлер. Математический анализ | страница 44
ƒ(x + yi) = u (х,у) + iv (х,у)
и что u и v можно продифференцировать как функции двух переменных в действительной области R. Следовательно, их частные производные удовлетворяют условиям
∂u/∂x = ∂v/∂y
∂u/∂x = ∂v/∂x
И наоборот, если u и v можно продифференцировать как действительные функции и при этом выполняются предыдущие равенства для производных, то ƒ — дифференцируемая функция и ƒ = u + iv.
Эти уравнения встречаются уже на первых страницах современного учебника по комплексному анализу и знакомы всем студентам, изучающим физику и инженерное дело.
Эйлер нашел время для изучения вопросов статистики и вероятностей. И хотя его исследования в этой области были не слишком обширны, о них стоит упомянуть. Иногда ученый говорил об этих работах в переписке с королем Фридрихом II. Некоторые изыскания ученого касаются азартных игр и пари — в то время эта область считалась научной. Действительно, в них часто решались задачи, впоследствии приобретавшие большое научное значение. Как и другие выдающиеся математики, например Иоганн Генрих Ламберт (1728-1777) или Пьер-Симон Лаплас, Эйлер изучал карточную игру treize (413"), известную также под названием "встреча" (или "совпадения"). Затем он углубился в лотереи, возникшие как раз в это время, и в страхование жизни, а также в статистику жизни и смерти. Пенсия и ежегодные взносы, которые необходимо выплачивать для ее получения, высчитываются на основе этой статистики, поскольку их объем зависит от большей или меньшей вероятности смерти человека.
Эйлер написал принцессе Ангальт-Дессау, племяннице Фридриха, более 200 писем. В 1768 году они были собраны в один том под названием Lettres è une princesse d'Allemagne sur divers sujets de physique et de philosophie ("Письма к немецкой принцессе о разных физических и философских материях·). И даже в таком, казалось бы, легком жанре Эйлеру удалось удивить современников. В некоторых письмах (102-105) он рассуждает о силлогизмах и, чтобы лучше объяснить свою мысль, прибегает к диаграммам, как на рисунках 1 и 2.
РИС. 1
РИС . 2
Они напоминают диаграммы Джона Венна (1834-1923), хотя отличаются по смыслу. То, что Венн изобразил бы в виде диаграммы на рисунке 3, для Эйлера было бы рисунком 4. Венн изображал фрагмент диаграммы, даже если он был пустым, в то время как Эйлер, не думавший об общей картине, не считал это возможным. Венн называл свои диаграммы не диаграммами Венна, как их обозначают сегодня, а диаграммами Эйлера, так что не требуется уточнять, кто был источником его вдохновения.