Больцман. Термодинамика и энтропия | страница 54
В этом случае мы можем определить упорядоченное состояние как (1,2,3,4,5), где мы используем скобки и числа, отделенные запятыми, чтобы указать порядок. Теперь посмотрим, сколько всего есть возможных сочетаний. Поскольку в этом случае метод проб и ошибок займет слишком много времени, воспользуемся логико-математическим рассуждением. Первая карта может принимать пять значений: от 1 до 5. Как только мы ее выберем, у второй карты уже сможет быть только четыре значения, поскольку одна из карт будет находиться на первой позиции. Для третьей карты у нас останется только три варианта: для четвертой — два, и последней останется только одна карта. Числом сочетаний тогда будет произведение числа выборов, которые существуют для каждой карты. В этом случае это 5 · 4 · 3 · 2 · 1, что равно 120. Итак, из 120 существующих сочетаний только одно соответствует упорядоченному состоянию.
В случае с целой колодой всего существует 48 карт (или 52, в зависимости от типа колоды). Следуя подобному рассуждению, получается, что общее число сочетаний равно 48 · 47 · 46 х..., пока мы не дойдем до 1. Итоговое число — 1,24 · 10>61, то есть 1 с 61 нулями. Для наглядности, если бы кто-то ежесекундно пробовал другую конфигурацию, тасуя колоду, он получил бы упорядоченную колоду спустя 4 · 10>47 миллиона лет, что соответствует примерно 10>43 возрастам Вселенной. Как можно увидеть на сравнении примера пяти карт с примером с 48, число сочетаний быстро растет с количеством последних. Теперь, если задуматься, что число молекул газа значительно больше числа карт в колоде, то можно представить себе чрезвычайную невероятность того, что энтропия будет уменьшаться при любой ситуации.
Связь между энтропией и беспорядком, таким образом, ясна: более беспорядочные состояния более вероятны и, следовательно, они стремятся к большей энтропии. Отсюда можно сделать вывод, что беспорядок Вселенной стремится к росту. Как показано на следующих диаграммах, выполненных случайно начерченными линиями, беспорядочные конфигурации намного более многочисленны, чем упорядоченные: конфигурация, подобная правой верхней, намного более невероятна, чем беспорядочное сочетание.
Заметьте также, что новое понятие энтропии применимо не только к газам, но и к таким отличным от них системам, как колода карт. Действительно, формула Больцмана может быть распространена на множество систем и породила альтернативные "энтропии", присутствующие в различных областях знания. Среди них выделяется энтропия Шеннона, описывающая содержание информации в сообщении.