Образование химических элементов в космических телах 1 | страница 66



(две альфа-частицы + нейтрон), С>13 (три альфа-частицы + нейтрон), Ne>21 (пять альфа-частиц + нейтрон). Интересно напомнить, что именно в результате реакции Ве>9(α, п)С>12 в лабораторных условиях впервые был получен нейтрон и она используется в качестве наиболее широко распространенного радий-бериллиевого источника нейтронов. Природные источники нейтронов на Земле также основаны на реакциях такого типа.

Рассмотрим теперь вопрос о том, не могут ли подобные реакции быть источником нейтронов в недрах красных гигантов? Мы уже указывали, что изотоп О>3 образуется в звездах в углеродно-азотном цикле, но поскольку мы находим этот изотоп в веществе Земли и метеоритов, можно сделать вывод, что он не полностью выгорает в этом цикле. Кроме того, не исключена возможность, что вещество красного гиганта перемешивается хотя бы частично, и тогда водород из ее оболочки попадает в центр звезды. Это может вызвать углеродно-азотный цикл с образованием дополнительного количества ядер С>13. Тогда по реакции

С>13 + Не>4 = О>16 + >0п>1

будут образовываться нейтроны. Так как время жизни ядер С>13 в этой реакции приближается к 1 млн. лет при температуре около 100 млн. град, то она может рассматриваться как практически постоянный источник нейтронов в течение всего времени существования красного гиганта. Однако в углеродно-азотном цикле образуются ядра N>14, которые активно захватывают нейтроны по реакции

N>14 + >0п>1 = С>14 + р

и тем самым как бы «отравляют» нейтронный источник, уменьшая его мощность.

Добавочным источником нейтронов может быть реакция

Ne>21 + Не>4 = Mg>24 + >0п>1.

Мы уже указывали, что ядро Ne>21 есть промежуточное звено в неоново-натриевом цикле, протекающем в звездах наряду с углеродно-азотным циклом. Возможность появления в недрах красных гигантов нейтронов дает основание предсказать вероятность образования в них тяжелых элементов.

г) Синтез изотопов тяжелых элементов

Ранее было показано, что нейтроны, образующиеся в ядерном реакторе за счет деления ядер урана, дают возможность осуществлять последовательный синтез всех трансурановых элементов от нептуния до фермия. Об этом свидетельствует цепочка ядерных реакций, приведенная на рис. 30. Такие реакции в принципе могут быть осуществлены во всех областях ядер и с нейтронами любых энергий, ибо в процессе присоединения нейтронов кулоновский барьер ядра не играет никакой роли.

Реакции последовательного присоединения нейтронов в ядерных реакторах могут протекать и в недрах красных гигантов. Цикл многих последовательных (