Лейбниц. Анализ бесконечно малых | страница 17
В начале XVII века не существовало каналов, которые позволяли бы ученым осуществлять быстрый и эффективный обмен идеями. Осознавая это, интеллектуалы начали объединяться, чтобы обмениваться опытом, а также результатами экспериментов на собраниях или посредством писем, которые зачитывались на таких собраниях. Одним из самых известных координаторов научной жизни Европы в то время был теолог Марен Мерсенн, монах ордена минимов. Он был однокурсником Декарта и написал несколько книг по философии и теории музыки, а в мире математики его имя известно благодаря так называемым простым числам Мерсенна.
Этот человек считал, что ученые должны работать в сообществе, советуясь друг с другом и сравнивая свои эксперименты и открытия. Представьте себе: в ту эпоху знания ремесленных гильдий передавались, иногда в большом секрете, только ученикам, которые входили в эти гильдии.
Числами Мерсенна обычно называют числа вида Mn=2n — 1, где п — натуральное число (например, 3, 7,15, 31, 63,127...). Те из них, которые являются простыми, известны как простые числа Мерсенна (из предыдущих это: 3, 7,31 и 127). Марен Мерсенн (1588-1648) представил данные числа, которые позже были названы в его честь, в работе Cogitata physico-mathematica («Физико-математические рассуждения»), опубликованной в 1641 году. В ней он изложил несколько свойств этих чисел, которые смогли доказать только три века спустя. Также в ней был ряд простых чисел Мерсенна (до показателя степени п = 257), как выяснилось позже, содержащий несколько ошибок.
Марен Мерсенн.
Электронная эра позволила начиная с середины XX века вычислять новые простые числа все большего размера: сегодня они используются в коммуникациях. В последние 60 лет наибольшее известное простое число почти всегда было числом Мерсенна. Сегодня известно всего 47 простых чисел Мерсенна, и наибольшее из них равно 2>57885161-1: оно состоит из более чем 17 млн цифр! Неизвестно, сколько простых чисел Мерсенна может существовать, хотя предполагается, что их бесконечно много.
Мерсенн же пребывал в убеждении, что знания должны быть в свободном доступе. Он создал сообщество, известное как кружок Мерсенна, которое собиралось прямо в его монашеской келье. К нему принадлежали, среди прочих, Декарт, Паскаль, Роберваль, Дезарг, Ферма и Гассенди. Хотя группа была создана как Академия Мерсенна, затем она соединилась с другим подобным сообществом, организованным братьями Пьером и Жаком Дюпюи, королевскими библиотекарями. Группа Дюпюи включала в себя не только математиков, таких как Гюйгенс, но и представителей других наук. Союз из двух групп стал называться Academia Parisiensis: это было то самое зерно, из которого позже вырастет Парижская академия наук.