Планк. Квантовая теория | страница 21
Для энергетистов и противников молекулярной теории теплоты именно это являлось главным аргументом против атомной теории, опираясь на который, Планк в начале своей карьеры стоял на позициях энергетической школы и оппонировал Больцману.
Но у Больцмана был ответ: «Так как дифференциальные уравнения механики не содержат в себе ничего аналогичного второму закону термодинамики, то представить себе механически его можно с помощью допущений относительно начальных условий». Движение тела определяется не только примененной к нему силой, но и его начальным положением и скоростью. Когда баскетбольный мяч находится в воздухе, после того как его подкинул профессиональный игрок, на него воздействуют те же силы, как если бы его подкинул обычный человек. Но будет или не будет мяч заброшен в корзину, зависит от движения запястья, которым в совершенстве владеют великие баскетболисты, придающие мячу необходимые начальные параметры скорости и направления.
В молекулярной теории теплоты макроскопические понятия давления и энергии имеют статистическое объяснение — они представляют собой среднее значение механических свойств молекул. Давление газа на стенку сосуда связано со средней силой, которую оказывают молекулы газа на стенку при столкновении. В идеальном газе температура пропорциональна средней кинетической энергии молекул. Больцман открыл статистическую интерпретацию понятия энтропии. Энтропия тела S в определенном состоянии пропорциональна логарифму термодинамической вероятности состояния системы W. На могиле Больцмана в Вене можно прочесть уравнение:
S=klnΩ,
в котором коэффициент пропорциональности известен как постоянная Больцмана.
Одна из формулировок второго начала термодинамики гласит: в изолированной системе энтропия всегда увеличивается. В вероятностной интерпретации Больцмана стремление системы к максимальной энтропии означает ее стремление к наиболее вероятному значению. Чтобы понять это, рассмотрим простой пример. Предположим, у нас есть четыре шара и две коробки. Обозначим шары цифрами от 1 до 4, а коробки — буквами А и Б. В таблице представлены все возможные способы распределения четырех шаров в двух коробках.
Коробка А | Коробка Б | Ω |
1234 | 1/16 | |
123 | 4 | |
124 | 3 | 4/16 |
134 | 2 | |
234 | 1 | |
12 | 34 | |
13 | 24 | |
14 | 23 | 6/16 |
23 | 14 | |
24 | 13 | |
34 | 12 | |
4 | 123 | |
3 | 124 | 4/16 |
2 | 134 | |
1 | 234 | |
1234 | 1/16 |
В правой колонке указана вероятность Ω каждого отдельного набора ситуаций. Всего имеется 16 возможных комбинаций, и только одна из них предполагает, что все шары находятся в коробке А с вероятностью 1/16. Наиболее вероятная ситуация — это обнаружить половину шаров в одной коробке и другую половину шаров — во второй (ее вероятность равна 6/16). Если у нас будет не четыре шара, а больше, разница между вероятностью ситуации, что все шары будут в одной коробке, и ситуации, при которой все шары будут распределены поровну по коробкам, увеличивается еще больше. Можно доказать, что когда N стремится к бесконечности, вероятность распределения шаров поровну стремится к 1.