Превратности научных идей | страница 23



На стороне гонимых выступил выдающийся итальянец Д. Кардано, который стал систематически их употреблять. Ему в решающей мере и обязан мир внедрением столь необычных чисел в научный обиход. Им же введены мнимые, или комплексные, величины, равным образом встреченные поначалу категорической неприязнью. Их внесли в разряд понятий, кои никогда не понадобятся. Даже сам родитель сокрушался, что в операциях с комплексными числами «арифметические соображения становятся все более неуловимыми, достигая предела, столь же утонченного, сколько и бесполезного». Не случайно Д. Кардано однажды записал: «Умолчим о нравственных муках и умножим (5 + √–15) на (5 – √–15)».

Но пришло время, и комплексные переменные стали необходимы для многих не только теоретических, но и близких к практической нужде дисциплин: в гидродинамике, в теории упругости, в электротехнике.

Обвинения в бесплодности тех или иных математических результатов, оказавших позднее серьезную услугу науке, сыпались слишком часто. Памятно, как в 1910 году английский астрофизик Д. Джинс неосторожно предрек, будто математическая теория групп никогда не придет в физику. Истекло не столь уж много дней, как разразилась так называемая «групповая чума». Теорию начали широко применять во многих науках. И не только для систематизации и описания больших массивов фактов, но и в предсказаниях новых явлений, к примеру, элементарной частицы омега-минус-барион.

Столь же шумно провалились прогнозы по поводу ненужности математической логики, без которой была бы немыслима «компьютерная эпоха» и вся «машинная математика». И сколько еще подобных прогнозов перешло в курьезы, показав свою некомпетентность перед будущим.


«Физика слишком трудна для физиков»

Указанные качества математики отрешаться от конкретных свойств возвышают ее над остальной наукой и делают своего рода разведчиком на дорогах познания. Она первой прорывается к таким структурам, о которых другие не смеют и подозревать. В свое время И. Кант назвал математику наукой, брошенной человечеством на исследование мира в его возможных вариантах. С годами эта ее репутация только подтвердилась.

Ныне стало привычным представлять математика изобретающим модели не только сущих, но и воображаемых и невообразимых явлений и состояний, из коих естествоиспытатель может, соответствующим образом интерпретируя их, отбирать для своих нужд подходящие формы. Это — своеобразные заготовки впрок, аристократические (потому что изящно выполнены) одежды для будущих процессов, вещей, организмов. Они — эти процессы, вещи и т. п. — еще неизвестны миру либо вообще пока не народились, но неугомонные математики уже держат для них готовые костюмы.