Беседы об информатике | страница 45



Согласно современным воззрениям (а это и есть та самая структура мышления, о которой говорит В. Гейзенберг) пространство и время не существуют независимо от материи. Наоборот, материальные объекты порождают пространство и время. Там, где нет материи, нет ни времени, ни пространства. Вот и получается заколдованный круг. Мы пытаемся описать поведение материальных объектов через то, что они порождают, что зависит от них самих.

Вместе с тем современная физика располагает рядом величин, таких, как электрический заряд, спин, лептонный заряд и тому подобное, которые могут быть известны совершенно точно и, следовательно, не требуют привлечения вероятностных подходов. Может быть, имеет смысл отказаться, естественно, там, где это существенно, от описания поведения объекта в терминах координат и скоростей?

Мы ни в коей мере не претендуем на высказывание каких-то советов физикам, и все сказанное имеет для нас отношение лишь к реальным возможностям получения информации о физических системах.


Существует ли камень?

Несколько слов о термодинамике — еще одной замкнутой, согласно классификации Гейзенберга, науке. Объектами изучения термодинамики являются системы, состоящие из очень большого числа компонентов: молекул или атомов. Мы уже говорили, что практически все законы термодинамики выводятся из двух основных: закона сохранения энергии и закона неубывания энтропии. Примечательнее всего то, что как при формулировке основных законов, так и при дальнейших выводах свойства самих компонентов системы, в данном случае молекул или атомов, практически не используются. Что требуется от молекул для того, чтобы состоящая из них система подчинялась законам термодинамики? Обладать некоторым запасом кинетической энергии и обмениваться этим запасом с другими молекулами в актах взаимодействия при условии, что сумма энергий всех молекул остается постоянной. Последнее условие и есть упомянутое условие того, чтобы система была замкнутой, то есть не обменивалась энергией с другими системами.

Такими же свойствами обладают не только системы, состоящие из молекул и атомов, но и великое множество других систем, в том числе и полностью абстрактных. Например, множество чисел, для которых мы ввели условие, что они могут меняться как угодно, лишь бы сумма оставалась постоянной.

Отсюда с неизбежностью следует вывод, что закон неубывания энтропии, — это не закон природы, а закон, описывающий поведение любой системы, в том числе и абстрактной, подчиняющейся только что сформулированному условию. Законом природы он становится тогда, когда имеются объекты, допускающие описание в понятиях термодинамики.