Беседы об информатике | страница 35
Каждый последовательный физик понимает, что если результат измерения температуры несет какую-либо информацию, то количество этой информации зависит от того, насколько тщательно проведены измерения, от точности измерительного прибора, может быть, от других каких-либо условий, но ни в коем случае не от того, кто или что является получателем сообщения о величине температуры.
На этом неприятности не закончились. Мера Шеннона в принципе не накладывает ограничений на количество информации. Вероятность некоторого события может быть сколь угодно близка к единице, и, следовательно, количество информации по Шеннону может быть сколь угодно близко к нулю. Наоборот, вероятность некоторого события может быть сколь угодно близка к нулю, и, естественно, количество информации по Шеннону может быть сколь угодно близко к бесконечности. Но какое действие на реальную физическую систему произведет сообщение, содержащее исчезающе малое количество информации? Иметь дело с физическими величинами, способными обращаться в бесконечность, также крайне неудобно. Бесконечность делится на любое количество частей, и каждая из них все равно остается бесконечностью.
Примечательно, что с подобными трудностями столкнулся сам К. Шеннон. Попытавшись определить количество информации в непрерывно изменяющемся сигнале, он сразу получил бесконечность. А ведь непрерывно изменяющийся сигнал — это то, что передает в эфир любая радиостанция. Чтобы выйти из этого затруднения, К. Шеннону пришлось ввести в рассмотрение некоторую малую величину — квант количества информации.
С аналогичной задачей за сорок с лишним лет до К. Шеннона столкнулся Макс Планк. Он изучал ситуацию, в которой величина, в его случае энергия излучения нагретого тела, обращалась в бесконечность. В качестве математического аппарата для описания ситуации использовалась энтропия. В чем состоял выход, предложенный М. Планком? Не считать излучение непрерывным, а ввести в рассмотрение некую порцию — квант излучения, — тот самый квант, который затем лег в основу квантовой физики. Так стоило ли через сорок лет начинать все сначала?
Применительно к термодинамической энтропии трудами крупнейших физиков второй половины XIX века Р. Клаузиуса (1822–1888), Л. Больцмана и Дж. Гиббса (1839–1903) удалось сформулировать весьма общий закон природы, получивший название закона неубывания энтропии, или второго начала термодинамики. Согласно этому закону энтропия замкнутой физической системы может только либо оставаться постоянной, либо возрастать. Пожалуй, сейчас уместно еще раз предоставить слово Н. Винеру.