Искусство мыслить рационально. Шорткаты в математике и в жизни | страница 3



.

– Это, дорогие мои ученики, и есть математика, – провозгласил мой учитель. – Искусство шортката!

«Ага! – подумал я, двенадцатилетний. – А ну-ка поподробнее!»

Дальше, больше, быстрее

Люди все время пользуются шорткатами. Ничего другого нам не остается. Нам нужно принимать решения за короткое время. Нам нужно решать сложные задачи, используя ограниченные умственные способности. Одной из первых стратегий, которые мы разработали для преодоления сложных препятствий, была идея эвристики – процесса, в котором мы упрощаем задачи, игнорируя, сознательно или бессознательно, часть информации, поступающей в мозг.

Проблема заключается в том, что эвристические методы, к которым прибегают люди, по большей части приводят к неверным суждениям и предвзятым решениям и, как правило, не подходят к тем целям, для которых их применяют. Зная что-либо из собственного опыта, мы склонны экстраполировать это знание на любые другие задачи, сравнивая их с тем, что нам уже известно. Мы судим о глобальном, опираясь на свое знание локального. Пока наш мир не слишком далеко выходил за пределы небольшого участка саванны, на котором мы жили, в этом не было ничего страшного. Но по мере расширения области нашего обитания эти эвристические методы перестали давать нам правильное понимание того, как устроены вещи, выходящие за пределы наших локальных знаний. Начиная с этого момента мы стали разрабатывать все более действенные шорткаты. Эти приспособления и образуют то, что мы называем сегодня математикой.

Чтобы обнаружить удобный шорткат, нужно подняться над тем ландшафтом, который собираешься пересечь. Когда находишься внутри ландшафта, часто приходится ориентироваться лишь по тому, что видишь вокруг себя. Хотя направление каждого следующего шага кажется правильным, получающийся в результате маршрут может вести к цели длинным окольным путем, а то и вовсе уводить совершенно в другую сторону. Поэтому люди разработали лучшие методы мышления – способность абстрагироваться от мелких подробностей решаемой задачи и понимать, что где-то может существовать неожиданный путь, который приведет к цели эффективнее и быстрее.

Именно так поступил с задачей, которую задал классу учитель, Гаусс. Пока другие ученики корпели, складывая числа, прибавляя каждый раз по одному следующему числу, Гаусс обозрел задачу целиком и придумал, как можно с выгодой для себя использовать начало и конец процесса ее решения.

В математике чрезвычайно важна способность применять мышление высокого уровня, позволяющее увидеть структуру там, где на первый взгляд видны лишь случайные извивающиеся тропки. Подняться над ландшафтом и оглядеть его с большой высоты, чтобы понять истинное положение вещей. Создание такой карты задачи и приводит к возникновению шорткатов. А когда мы получили способность видеть мысленным взором структуры, с которыми мы не встречались в физическом мире, эта способность к абстрактному мышлению стала залогом поразительных достижений человеческой цивилизации на протяжении многих веков.