Геометрия, динамика, вселенная | страница 74



AB имеет только относительный характер, причем оба вектора коллинеарны. Иначе говоря, в пространствах постоянной кривизны осуществляется равенство

v|| = H(r,t) r|| (56) AB AB

где функция H(r,t), казалось бы, зависит от обоих аргументов r и t. Но далее, несколько модифицируя рассуждения Е.Милна, мы покажем, что в действительности вследствие симметрических свойств пространства функция H=H(t), т. е. она не зависит от вектора r. Для этого рассмотрим точки A, B, C. Поскольку мы предполагаем, что размеры области w малы, то ее можно локально описывать геометрией Евклида. Тогда справедливы правила векторного сложения:

r|| = r|| + r||, (57) AB AC CB

v|| = v|| + v||. (58) AB AC CB

Но очевидно, что равенства (57), (58) можно совместить с соотношением (56) лишь в случае, если H=H(t), т. е. зависит исключительно от времени.

≡=РИС. 6

В наших рассуждениях неявно предполагалось, что эволюция области w автономна; оставшаяся область V-w (V объем всей сферы) не влияет на динамику малой области w. Однако это предположение также является следствием основных космологических постулатов или симметрии пространств постоянной кривизны. Действительно, если выбрать малый объем в форме сферы, то, допуская, что силы, действующие между частицами, — силы притяжения, нетрудно понять (рис. 6), что любому элементу F большой сферы, действующему на микросферу, будет соответствовать элемент G, уравновешивающий это притяжение. Поскольку это рассуждение верно для любых пар элементов F и G, то это означает, что объем V-w не действует на объем w и, следовательно, эволюция последнего происходит самостоятельно и независимо от объема V. Поэтому, рассматривая эволюцию малого объема, мы моделируем эволюцию всего объема. Итак, в пределах объема w

v|| = H(t) r|| (59) AB AB

для любых пар точек A и B. Уравнение (59) можно переписать в форме

dr|| / dt = H(t) r|| (60) AB AB

Рассмотрим далее два случая.

1. Функция 1/H(t) разлагается в ряд Тейлора в окрестности t=0.

2. Функция 1/H(t)=const, т. е. не разлагается в ряд Тейлора.

Первый случай. Пусть 1/H(t)=a|+b|t+…(a|,b|

1 1 1 1 постоянные) Допуская, что b ≠ 0 и используя трансляционную инвариантность времени Вселенной, т. е. совершая замену a|+b|t — > b|t, получаем уравнение dr|| / dt = (br|| / t) 1 1 1 AB AB (b=1 / b=const), решением которого является функция

b r|| ~ t|. (61) AB

Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t|, отсчитываемого от