Геометрия, динамика, вселенная | страница 7
К этому вопросу мы далее будем неоднократно возвращаться.
2. ГЕОМЕТРИЯ КАК ФИЗИКО-МАТЕМАТИЧЕСКАЯ ДИСЦИПЛИНА
До конца 20-х годов прошлого столетия евклидова геометрия казалась незыблемой и единственной теорией пространства.
В 1829 г. Н.И.Лобачевский опубликовал статью «О началах геометрии». В этой статье, так же как и в письмо молодого венгерского математика Я.Больяи, переданном К.Гауссу, утверждалось, что возможно построение непротиворечивой геометрии, не содержащей известный пятый постулат евклидовой геометрии. Этот постулат, гласящий, что через точку, лежащую вне данной прямой, можно провести одну и только одну прямую, параллельную данной, казался наиболее уязвимым (или наименее очевидным) априорным требованием евклидовой геометрии. Однако попытки вывести его из других аксиом оканчивались всегда неудачей. Поэтому был выбран другой путь — построение геометрии, основанной на всех аксиомах и постулатах Евклида, но в которой был заменен пятый постулат о параллельных: через одну точку можно провести либо бесконечное множество прямых, параллельных данной, либо ни одной.
Кажется не лишенным интереса следующий вопрос: почему в течение тысячелетий геометрия Евклида сохранялась в первозданной форме, а затем почти одновременно три человека подвергли ревизии одно из основных ее положений? Разумеется, на этот вопрос нет однозначного ответа. Однако разумно допустить, что подобное совпадение не случайно. В ревизии геометрии свою роль сыграл психологический климат, характерный для общественной жизни того времени, явившийся следствием происшедших революционных потрясений и обусловивший стремление к критическому пересмотру канонизированных учений. Даже библейские догматы, освященные тысячелетней верой и поддерживавшиеся авторитарностью церкви, подверглись критическому анализу (Б.Спиноза).
Лишь геометрия Евклида оставалась каноническим учением, но, наконец, наступила и ее очередь.
Необходимо подчеркнуть важное обстоятельство. Отрицание пятого постулата отнюдь не означает отрицания всей Евклидовой геометрии. Все аксиомы его геометрии и сам дух этой науки сохранились. Но отрицание даже одного утверждения Евклида имело далеко идущие последствия: возникла мысль, что геометрия Евклида не единственное и не последнее слово в геометрии. А такая мысль могла быть расценена в то время не иначе, как ересь. (Известно, что Гаусс не опубликовал своих исследований по основам геометрии, опасаясь непонимания со стороны своих коллег.)