Геометрия, динамика, вселенная | страница 38



(ct)**2 — x**2 — y**2 — z**2 = 0 (20)

или в дифференциальной форме

(cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (21)

Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) — направленный вектор: существует принцип причинности, различающий будущее и прошлое.

В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме

ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (22)

Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.

Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v≠c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v

Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v≤c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v — > c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал

ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = const (23)

относительно вращений и трансляций.[8]

Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.

Инвариантность интервалов ds или s — математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.