Геометрия, динамика, вселенная | страница 10



3. ИДЕАЛИЗАЦИЯ И ПРИБЛИЖЕНИЕ

Ранее мы упоминали о некоторой неопределенности в основных понятиях геометрии: точка, линия и т. д. Превосходной иллюстрацией такой неопределенности является геометрический принцип двойственности. Суть этого принципа заключается в том, что если поменять местами наглядные образы точки и прямой, то в аксиомах и теоремах геометрии почти ничего не изменится.

Покажем некоторые простейшие примеры проявления принципа двойственности, для чего вначале приведем стандартные положения геометрии, а затем попросим читателя сделать усилие и в соответствующих фигурах совершить взаимную замену точек и прямых.

1. Через одну точку можно провести бесконечное число прямых. Любая прямая содержит бесконечное число точек.

Второе положение эквивалентно первому в следующем смысле: нужно слово «провести» заменить на «содержит». Такая замена имеет лишь семантический характер.

2. Через точку пересечения двух прямых a и b можно провести бесконечное число прямых, расположенных между прямыми a и b.

Ясно, что и это положение сохраняет свою силу при взаимной замене точек и прямых.

3. Треугольник — это фигура, образованная тремя прямыми, проходящими через три точки, не лежащие на одной прямой.

Легко проверить, что при взаимной замене точек и прямых получается привычный треугольник.

Число иллюстраций принципа двойственности можно существенно увеличить, он пронизывает всю геометрию. Отсюда можно сделать вывод: интуитивные понятия «точки» и «прямой» в значительной степени условны.[1]

Из этого вывода следует естественный вопрос: как самая точная наука — математика (точнее, одна из ее областей геометрия) может базироваться на системе не вполне определенных понятий? Более того, при взаимной замене ее основных определений большинство выводов сохраняют свою силу.

Ответ на поставленный вопрос несложен, пока он относится к чистой математике (а речь идет именно об этом направлении).

Высшим критерием математической истины является логическая замкнутость, непротиворечивость системы аксиом и следующих из нее теорем. Чеканная логика — основной критерий истины в математике.

Соответствие данной математической конструкции эмпирическим наблюдениям или простым интуитивным представлениям является критерием менее важным, чем логическая завершенность.

Крупнейший математик Д.Гильберт посвятил значительную. часть своей жизни совершенствованию аксиоматики геометрии. Ему принадлежит известное основополагающее определение: