Как вытащить из данных максимум. Навыки аналитики для неспециалистов | страница 5



Одна из компаний, культивирующих сетевое взаимодействие, цифровизацию и производство данных, – знаменитый Rolls-Royce. Сейчас это не просто мощная инженерная компания, производящая замечательные двигатели. Rolls-Royce – эффективная организация, управляемая на основе данных: она использует технологию интернета вещей и возможности связи для предоставления и получения данных, которые стали ценным активом компании[7]. Один из примеров использования Rolls-Royce возможностей данных – прогностический метод мониторинга техобслуживания двигателей[8]. С помощью датчиков, собирающих данные, Rolls-Royce успешно предсказывает возможные проблемы с авиационными двигателями и гарантирует, что они не откажут прямо в воздухе. Другой пример того, как «связь всего со всем» и интернет вещей улучшают нашу жизнь, можно найти в сфере здравоохранения. Использование данных, генерируемых оборудованием для физиотерапии, позволяет разрабатывать более эффективные программы для тех, кто нуждается в физиотерапевтическом лечении[9]. Учитывая растущую стоимость медицинских услуг, такие более персонализированные программы будут помогать людям следить за здоровьем и реже попадать в больницу.

Еще одна сфера, в которой анализ данных способствует росту и развитию, – это спорт. Помните фильм «Человек, который изменил все» с великолепным Брэдом Питтом в главной роли? В нем говорится, что данные и их анализ могут очень серьезно влиять на судьбу спортивных команд, помогая добиваться побед. Речь, конечно, о бейсболе, но примеры работы с данными можно найти и в баскетболе, включая НБА (Национальную баскетбольную ассоциацию) – а это уже совсем другой масштаб. У большинства команд НБА (возможно, даже у всех) есть свои аналитики и эксперты по данным. Их задача – обнаруживать тенденции и закономерности в данных, которые они собирают: например, поиск недооцененных игроков и повышение их стоимости для продажи или обмена. Кроме того, команды НБА используют данные и технологии для отслеживания уровня утомляемости и качества сна своих игроков, что позволяет корректировать режим тренировок, предотвращать травмы и т. д. НБА даже проводит свой собственный ежегодный «хакатон», чтобы найти и привлечь новых талантливых аналитиков. Знаете ли вы, что количество трехочковых бросков в лиге выросло не в последнюю очередь благодаря анализу данных?[10]

Но довольна не только НБА. Всю мощь данных заключают и вещи, которыми мы пользуемся в быту: смарт-часы, смартфоны, посудомоечные машины, холодильники, системы обогрева и кондиционирования, автомобили и прочие транспортные средства… и многое, многое другое. В прочих сферах нашей жизни данные тоже производятся в невероятном количестве. Только представьте себе, сколько информации проходит через соцсети, торговые сайты вроде Amazon и eBay, платежные системы и т. д. Невероятные цифры. Давайте взглянем на статистику, предоставленную Всемирным экономическим форумом. В 2019 году