Основы реальности. 10 фундаментальных принципов устройства Вселенной | страница 44
Современная наука дает свой ответ на этот вопрос. От ответа Демокрита он существенно отличается в деталях, но не менее дерзок, а в своей простоте даже более радикален. А главное, этот ответ зиждется на невероятном количестве экспериментальных свидетельств.
Итак, в соответствии с современными представлениями у материи три основные характеристики:
1) масса,
2) заряд,
3) спин,
которые и определяют все ее остальные свойства. И это все.
С философской точки зрения основной вывод таков: число характеристик очень мало и каждую можно точно измерить. И еще: как и предвидел Демокрит, связь между основополагающими свойствами материи — глубинной структурой реальности — и повседневным обликом вещей достаточно отдаленная. И хотя утверждение, что «[лишь] в общем мнении существует» сладость, горечь, тепло, холод и цвет, кажется мне слишком сильным, проследить непосредственную связь перечисленных свойств с первоисточником — массой, зарядом и спином — сложно.
Подробный рассказ о массе и заряде, как электрическом, так и цветном[47], я перенес в приложение. Здесь же я расскажу немного о, возможно, наименее привычной характеристике — спине.
Если вы когда-нибудь играли с волчком, вам будет легче понять, что такое спин. Основная идея такова: спин элементарной частицы — идеальный, без трения волчок, который никогда не перестает вращаться.
Движение волчка, или гироскопа, вызывает у нас интерес, поскольку оно необычно для нашего повседневного опыта. Если говорить конкретнее, быстро вращающийся гироскоп противодействует попыткам изменить направление своей оси вращения: чтобы сделать это, нужно приложить большую силу[48]. Мы говорим, что гироскоп обладает моментом инерции относительно оси вращения. Этот эффект используют для навигации самолетов и космических аппаратов, на борту которых есть гироскопы, помогающие им сохранять ориентацию.
Чем быстрее вращается гироскоп, тем эффективнее он сопротивляется попыткам изменить его ориентацию. Сравнивая силу с откликом на ее воздействие, можно определить меру момента инерции относительно оси вращения. Она называется угловой момент. Угловой момент больших, быстро вращающихся гироскопов большой, и они мало реагируют на приложенную силу.
С другой стороны, элементарные частицы — на самом деле крошечные гироскопы. Их угловой момент очень мал. Когда угловой момент становится настолько малым, мы переходим в область квантовой физики. Часто выясняется, что в квантовой механике величины, считавшиеся непрерывными, могут изменяться только небольшими дискретными порциями, или