Научная журналистика как составная часть знаний и умений любого ученого. Учебник по научно-популярной журналистике | страница 22
Здесь содержится мой первый ответ на вопрос, который вы, без сомнения, давно хотите мне задать: как увеличить величину коэффициента С? Используйте дополнительные средства из арсенала научного журналиста – например, найдите подходящий к случаю зрительный образ.
Бросим еще один взгляд на рис. 3. Гипотеза гиперболы, которую мы обсуждаем, утверждает, что Точность, помноженная на Понятность, есть C, величина постоянная. Чтобы придать нашему анализу истинно научное звучание, станем выражать Точность в экзектонах (от англ. exact, exactness), Понятность – в андерстонах (от англ. understanding). Тогда постоянная
С = AI = [exacton]·[underston] = [gifton].
(Название единицы измерения коэффициента С «гифтон» происходит от англ. gift – дар, талант.)
Таким образом, мера одаренности научного журналиста, 1 гифтон, равен произведению 1 экзетона на 1 андерстон.
Теперь уже даже самый строгий критик не посмеет утверждать, что наша гипотеза лишена научного содержания, а вы с пониманием отнесетесь к этому небольшому розыгрышу.
Вернемся к рис. 3. Из него каждый может легко заключить, что нам следует придерживаться верхней кривой, где С = 64, а не 4. Действительно, пусть Точность А = 8. Тогда на верхней кривой Понятность достигает значения 4, в то время как на нижней оно всего лишь 1/2, что ровно в 8 раз меньше.
Есть несколько путей к этой цели. Но в любом случае добиться успеха можно, лишь умело используя все пять чувств, данных вам Природой, все четыре ведущих колеса вашего воображения, все три измерения пространства, вас окружающего, и обе половины вашего мозга, каждая из которых воспринимает и отражает мир по-своему, чтобы получить один результат – быть понятым другими людьми. В конечном итоге это и есть заветная цель любого разумного существа. Но для научного журналиста это еще и профессиональная обязанность.
У меня больше не припасено методических шуток и розыгрышей, зато я хочу предложить вам цирковой трюк, имеющий прямое отношение к нашему разговору.
Уважаемой аудитории предлагается убедиться, что бывают поверхности, у которых только одна сторона – например лента Мёбиуса. Фокусник на арене держит в руках длинную ленту, затем поворачивает ее вдоль оси на 180° и склеивает концы. К изумлению зрителей оказывается, что теперь ленту можно покрасить только в один цвет.
Можно ли было более наглядно, в еще более понятной и запоминающейся форме рассказать о геометрической идее односторонних поверхностей?