Научные открытия для тех, кто любит краткость | страница 128
12 августа
«Звездные дожди»
12–13 августа – пик ежегодного метеорного потока «Персеиды». Это один из красивейших и стабильных потоков с максимальной интенсивностью от 50 до 100 метеоров в час.
Иногда на небе происходят настоящие звездопады. Метеоры словно бы вылетают из одной точки на небе. Эту точку назвали радиантом, а множество метеоров, которые кажутся исходящими из этой точки, – метеорным потоком. Потоки называют по имени созвездия, в котором находится радиант: дракониды, лириды, ориониды… Некоторые потоки дают ежегодные «дожди», другие – повторяющиеся изредка. Почему возникают метеорные потоки? Земля, двигаясь вокруг Солнца, пересекает различные метеорные рои. Эти рои движутся по орбитам, по которым раньше двигались исчезнувшие кометы. Кометные ядра постепенно разрушились, и их кусочки растянулись вдоль кометной орбиты, образуя что-то вроде пылевого бублика. Когда Земля пересекает «бублик», кометные частицы влетают в атмосферу и сгорают на высоте 80–130 км, оставляя светящиеся следы. Ровно через год, когда Земля возвращается в ту же точку своей орбиты, «звездный дождь» повторяется. Метеоры потока влетают в земную атмосферу по параллельным траекториям, а в перспективе мы видим их как бы исходящими из одной точки на небе.
Макса Борна, будущего знаменитого физика, спросили на экзамене по астрономии: «Что вы делаете, когда видите падающую звезду?» Борн знал, что надо ответить: «Я смотрю на часы, определяю созвездие, из которого она появилась, и вычисляю приблизительную траекторию». Но не удержался и сказал: «Загадываю желание».
13 августа
Двигатель на антивеществе?
В 1928 году Поль Дирак предположил существование антивещества (см. 1 февраля), и его догадка блестяще подтвердилась. Антипротон вместе с позитроном могут образовать антиатом водорода, и такие антиатомы действительно удалось получить в 1998 году. В принципе возможно существование антивещества, состоящего из антиатомов любых химических элементов. Наиболее сложной формой антивещества, полученной в лабораторных условиях, являются антиядра трития и гелия-3.
При встрече частицы с античастицей происходит их аннигиляция (исчезновение). При этом вся масса полностью преобразуется в энергию излучения. Ни один другой процесс не может высвободить столько энергии! Даже при взрыве термоядерных бомб в энергию превращается лишь доля процента полной массы. Если бы удалось сделать антиматерию топливом, то ее небольшого количества (размером с таблетку аспирина) было бы достаточно для обеспечения энергией космического корабля на протяжении сотен лет! А одного миллиграмма антивещества хватило бы для полета на Марс. Проблема в том, что антиматерии в готовом виде в нашей части Вселенной не существует. А для ее синтеза в лаборатории требуется затратить куда больше энергии, чем можно затем получить путем аннигиляции. Еще более сложная проблема – хранение антивещества, ведь оно аннигилирует при любом контакте с обычной материей. Это значит, что мы не полетим на ракетах, использующих подобные типы двигателей, в обозримом будущем.