Теорема века. Мир с точки зрения математики | страница 71



Представим себе изолированную систему, состоящую из некоторого числа материальных точек; пусть эти точки находятся под действием сил, зависящих только от их расстояний и относительного расположения, но не зависящих от их скоростей. В силу принципа сохранения энергии система должна иметь силовую функцию.

В этом простом случае выражение принципа сохранения энергии крайне просто. Некоторая доступная измерению величина должна оставаться постоянной. Эта величина представляет собой сумму двух членов; первый зависит только от положения материальных точек и не зависит от их скоростей; второй представляет собой линейную функцию квадратов скоростей. Такое разложение может быть сделано только одним способом. Первый член, который я обозначу через U, будет потенциальной энергией, второй, который я обозначу через T, будет кинетической энергией.

Конечно, если Т + U равняется постоянной величине, то это же самое будет иметь место для любой функции величины Т + U, т. е. для

φ(T + U).

Но эта функция φ(T + U) не будет суммой двух членов, из которых один был бы независим от скоростей, а другой зависел бы линейно от их квадратов. Между функциями, сохраняющими постоянную величину, есть только одна, обладающая таким свойством, а именно Т + U (или любая линейная функция Т + U – это не имеет значения, ибо такая линейная функция всегда может быть приведена к виду Т + U путем преобразования масштаба и перемены начала). Это выражение мы и назовем энергией; первый член будет иметь значение кинетической энергии, второй – значение потенциальной энергии. Таким образом, определение обоих видов энергии может быть доведено до конца без всякой двусмысленности. Точно так же может быть дано определение масс. Кинетическая энергия, или живая сила, весьма просто выражается через массы материальных точек и через их скорости, соотнесенные к какой-нибудь одной из них. Эти относительные скорости доступны наблюдению, и если мы будем знать выражение кинетической энергии как функции относительных скоростей, то массы представятся коэффициентами этого выражения.

Итак, в этом простом случае определение основных понятий является делом легким. Но трудности опять возникают в более сложных случаях, как, например, если силы зависят не только от расстояний, но и от скоростей. Вебер предполагает, что взаимодействие двух электрических частиц зависит не только от их расстояния, но также от их скорости и ускорения. Если бы материальные точки притягивались по тому же закону,