Теорема века. Мир с точки зрения математики | страница 20
Между тем она его обманула бы. Можно доказать, что существуют кривые, не имеющие касательных, если эта кривая определена как аналитическая непрерывность второго порядка.
Несомненно, какая-нибудь уловка, аналогичная ранее изученным нами, позволила бы устранить противоречие, но так как оно встречается только в весьма исключительных случаях, то им и не занимаются. Вместо того чтобы стараться примирить интуицию с анализом, удовольствовались тем, что пожертвовали одним из двух; и так как анализ должен остаться непогрешимым, то всю вину отнесли на счет интуиции.
Физическая непрерывность нескольких измерений. Выше я исследовал физическую непрерывность такою, какой она вытекает из непосредственных данных наших чувств или, если угодно, из прямых результатов опытов Фехнера; я показал, что эти результаты резюмируются противоречивыми формулами
А = В, В = С, А < С.
Посмотрим теперь, как это понятие было обобщено и как оказалось возможным вывести из него понятие непрерывностей многих измерений.
Рассмотрим две любые группы ощущений. Мы или будем в состоянии различить их, или нет, подобно тому как в опытах Фехнера вес в 10 граммов можно было отличить от веса в 12 граммов, но не от веса в 11 граммов. Ничего другого не нужно для построения непрерывности многих измерений.
Назовем элементом одну из этих групп ощущений. Это будет нечто аналогичное математической точке, однако не совсем то же самое. Мы не можем определить размеры нашего элемента, так как мы не умеем отличить его от соседних элементов, он как бы окутан туманом. Если бы можно было употребить астрономическое сравнение, наши «элементы» были бы подобны туманностям, между тем как математические точки уподоблялись бы звездам.
Если так, то система элементов образует непрерывность, раз есть возможность перейти от любого из них к какому угодно другому через ряд последовательных элементов – таких, что каждый из них не мог бы быть различен от предыдущего. Этот линейный ряд является по отношению к линии математика тем же, чем является изолированный элемент по отношению к точке.
Прежде чем идти дальше, я должен разъяснить, что такое купюра. Рассмотрим непрерывность С и возьмем у нее некоторые из ее элементов, которые на одно мгновение будем рассматривать не принадлежащими больше к этой непрерывности. Совокупность элементов, взятых таким образом, будет называться купюрой. Может статься, что вследствие этой операции С окажется подразделенной на несколько отдельных непрерывностей, так как совокупность остающихся элементов не будет более составлять единую непрерывность.