Теорема века. Мир с точки зрения математики | страница 115
Но проблема не имела бы никакого смысла, если бы я до всякого наблюдения не составил себе идею о вероятности a priori того или иного закона и о шансах ошибки, которую я могу совершить.
Если мои инструменты хороши (и это я знал бы до наблюдения), то я не позволю моей кривой значительно уклоняться от точек, представляющих непосредственные измерения. Если же они плохи, то я мог бы отступить от этих точек несколько больше, лишь бы получить кривую, менее извилистую, в целях упорядоченности я мог бы принести и бо́льшую жертву.
Однако почему же я стараюсь провести кривую без извилин? Потому, что закон, представляемый непрерывной функцией (или функцией, у которой производные высшего порядка малы), я уже a priori рассматриваю как более вероятный сравнительно с законом, не удовлетворяющим этому условию. Без этой уверенности рассматриваемая проблема не имела бы никакого смысла; интерполяция была бы невозможна; нельзя было бы вывести закон из конечного числа наблюдений; наука не существовала бы.
Пятьдесят лет тому назад физики рассматривали более простой закон как более вероятный, чем закон сложный, при прочих равных условиях. Они ссылались на этот принцип в защиту закона Мариотта против опытов Реньо. Теперь они отказались от этой веры; и между тем как часто они бывают вынуждены поступать так, как если бы они сохранили эту веру! Как бы то ни было, именно от этого направления осталась вера в непрерывность, и мы только что видели, что если бы эта вера в свою очередь исчезла, то экспериментальная наука стала бы невозможной.
VI. Теория погрешностей. Мы пришли, таким образом, к обсуждению теории погрешностей, которая находится в непосредственной связи с проблемой вероятности причин. И здесь мы снова констатируем следствия, – а именно, известное число расходящихся между собою наблюдений – и стараемся разгадать причины, которыми вызываются, с одной стороны, истинное значение измеряемых величин, с другой – ошибки, допущенные в каждом отдельном наблюдении. Надо было бы вычислить, какова a posteriori вероятная величина каждой ошибки и затем каково вероятное значение измеряемой величины.
Но, как я уже выяснил, нельзя было бы предпринять это вычисление, если не допустить a priori, т. е. до всякого наблюдения, некоторого закона вероятности погрешностей. Существует ли какой-либо закон погрешностей?
Закон погрешностей, принятый всеми вычислителями, есть закон Гаусса, который представляется некоторой трансцендентной кривой, известной под названием «колокола».