Теория расчета нефтяных аппаратов высокого давления | страница 7
И в работе [11] в итоге указана формула для толстостенных сосудов из аустенитно-ферритной стали по Фрейтагу В.А.:
Расчет методом конечных элементов
Приведем пример реализации решения численным методом – методом конечных элементов трехмерной и осесимметричной задач теории упругости.
В настоящее время расчеты МКИ проводят в программном пакете МКЭ, например, ANSYS, рассчитывая корпус аппарата полностью в сборе на комбинацию всех видов нагрузки.
Результатом расчета являются цветные диаграммы деформаций и напряжений, по которым делается заключение о работоспособности конструкции аппарата для заданных расчетных нагрузок.
Под расчетом по методу конечных элементов понимается вычислительный процесс на компьютере, состоящий из [13,с.6]:
– описания конечных элементов, численного интегрирования для вычисления элементов матриц,
– объединение матриц отдельных конечных элементов в общую матрицу ансамбля элементов,
– численное решение системы уравнений равновесия.
Решение уравнений равновесия для статических и динамических задач занимает основные затраты машинного времени на вычисления. Инженер-расчетчик может контролировать ход вычисления.
При расчете МКЭ оболочек (т.е. корпусов аппаратов) предполагается [13,с.73], связь конечных элементов в узловых точек (которых конечное число), перемещения узловых точек определяют перемещения конечных элементов (поля конечных элементов). За счет этого используя принцип возможных перемещений можно составить уравнения равновесия для совокупности всех конечных элементов.
Решение
трехмерной задачи теории упругости
Приведем пример формы трехмерного конечного элемента:
Перемещения тетраэдрического элемента определяется перемещением 12 компонентами перемещений его узлов [14,с.107]:
Компонентами u, v, w определяется вектор перемещений точки.
Матрица деформаций [14,с.108]:
Матрица тепловых деформаций [14,с.109] (θε – средняя температура элемента):
Матрица упругости [14,с.109]:
Матрица напряжений [14,с.109] ({σ0 – аддитивный член}):
Объединяя тетраэдрические элементы, можно разбивать пространство на «кирпичики». В этом случае повышается наглядность разбиения.
Зенкевич указывает [14,с.115] о расчете сосуда высокого давления МКЭ с использованием конечных элементов в виде «кирпичиков». В приводимом примере расчета выполнялся для 10000 степеней свободы. И Зенкевич указывает на то, что при применении более сложных конечных элементов расчет упрощается за счет уменьшения степеней свободы. Но использование сложных элементов не даст преимуществ в сокращении времени подготовки расчета, если процесс разбиения автоматизирован [14,с.169]. В настоящее время в программных пакетах МКЭ используется автоматизированное построение расчетной сетки. При этом при применении сложных элементов сокращается время вычислений, однако ширина матрицы увеличивается и сокращение времени может не происходить. Увеличение размеров конечных элементов приводит к ухудшению аппроксимации конструкции.