Правила счета элементов бесконечного множества | страница 6
Квадратная таблица. Однако и это не предел. Можно, например, составить таблицу из n строк натуральных чисел, поэтому, соответственно, столбцов будет тоже n, где n – натуральное число. Теперь подсчитаем, перенумеруем диагональным процессом Кантора все числа этой таблицы. Очевидно, что каждое из чисел получит свой порядковый номер, которых, понятно, будет ровно n, стремящееся к бесконечности. Но таблица определенно содержит n>2 элементов. Получается, что количество n>2 элементов равно n, или, другими словами, количество всех натуральных чисел равно квадрату количества всех натуральных чисел. Конечно, сами натуральные числа к этому непричастны. Проблему создаёт выбор специфических способов подсчета, в основе которых явно лежат методы Кантора, позволяющие получить любой, произвольный результат. Поскольку один и тот же метод при корректном применении даёт разные результаты, такой метод не может быть верным.
О счетности континуума – точек на отрезке
Как утверждается со ссылкой на методологию счета Кантора, множество всех действительных чисел несчетно, то есть, невозможно их пересчитать, присвоив каждому из них некоторое натуральное число – номер, поскольку всегда останутся непронумерованные числа [3, с.73-74]. Вообще-то, на первый взгляд, интуитивно это выглядит вполне очевидно. Рассмотрим, например, следующую явно бесконечную последовательность действительных чисел:
В этих числах запятая просто занимает позицию n, представляющую натуральное число, поэтому чисел в указанной последовательности в точности равно числу строк, n, где n равно бесконечности. Поскольку все номера натуральных чисел использованы для нумерации этих действительных чисел, то очевидно, что остальное множество действительных чисел осталось без номеров, то есть их множество – несчетно. В связи с хитростями нумерации, как правило, вспоминают математика Кантора, который, как считается, доказал, что число точек на отрезке прямой сосчитать никаким способом нельзя. Утверждается, что их нельзя перенумеровать с помощью бесконечного ряда натуральных чисел, приписывая каждой точке свой номер, в каком бы порядке мы ни выбирали эти точки. Всегда останется хотя бы одна точка, на которую не хватит номера!
Перенумеровать или, тождественно, пересчитать бесконечное количество чего-либо, в том числе, сосчитать точки отрезка, действительно, невозможно физически. Однако приводимое затем доказательство, как правило, начинается со слов: «Представим, что вопреки нашему утверждению кому-то удалось перенумеровать точки этого отрезка», после чего приводятся хитрые комбинации с нумерацией. Но здесь следует напомнить фундаментальный принцип классической логики и классической математики, который постулирует полное отрицание актуальной бесконечности: «Infinitum Actu Non Datur