Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления | страница 34
Кольца Борромео состоят из трех связанных элементов, которые полностью распадаются при исключении одной части. Аналогичная идея лежит в основе следующей головоломки.
Кольца Борромео
Валькнут
Обычно, чтобы повесить картину на двух гвоздях, веревку цепляют за оба гвоздя, как показано на рисунке.
Преимущество такого способа состоит в том, что, если один гвоздь выпадет, картина продолжит висеть, поскольку будет держаться на втором гвозде.
Сможете ли вы придумать способ так обернуть веревку вокруг гвоздей, чтобы картина падала на пол при извлечении одного из них? (В случае необходимости веревку можно удлинить.)
Кольца и предметы домашнего обихода естественным образом приводят нас к математической идее кольца для салфеток. Именно такая фигура получится, если просверлить цилиндрическое отверстие в шаре таким образом, чтобы центр отверстия проходил через центр шара.
Следующая головоломка особенно интересна тем, что в ней очень мало данных.
Высота кольца для салфеток – 6 сантиметров. Чему равен его объем?
Решение этой головоломки предполагает большое количество рутинной работы, но пусть вас это не пугает. Я помогу вам начать ее решать. Поверьте, это потрясающая задача.
Объем кольца для салфеток равен разности между объемом шара и объемом подлежащей удалению центральной части в виде цилиндра с выпуклыми верхней и нижней поверхностями – куполами.
Высота цилиндра составляет 6 сантиметров. Пусть r – радиус шара, h – высота купола, a – радиус поперечного сечения цилиндра, который также является радиусом основания купола. Далее вам понадобятся только формулы объема, которые я с удовольствием привожу ниже.
Формула объема шара:
Формула объема цилиндра: πa>2 × 6 см, или 6πa>2
Формула объема каждого купола:
Мы уже близки к решению. Объем кольца для салфеток равен объему шара минус объем цилиндра минус двойной объем купола. С помощью теоремы Пифагора мы можем выразить a через r, а также h через r. Следовательно, можно записать объем кольца для салфеток в виде выражения, в котором r – единственная переменная. Это будет длинное выражение, содержащее множество r и π.
Чего же вы ждете?!
Историк Геродот писал, что геометрия была изобретена в Египте при измерении площади участков пахотной земли, затопленной Нилом. Вычисление площади квадратов и прямоугольников до сих пор остается одной из первых задач, которые мы изучаем в геометрии. Для этого необходимо умножить одну сторону на другую, смежную.