Кислород. Молекула, изменившая мир | страница 70
Фотодыхание настолько распространенный процесс, что оно вполне может быть одним из основных факторов, стабилизирующих содержание кислорода в атмосфере. Если уровень кислорода повышается, сразу возрастает интенсивность фотодыхания, что приводит к остановке роста растений. Низкорослые растения производят меньше кислорода, способствуя снижению концентрации кислорода до прежнего уровня. Интересно, что эта гипотеза не подразумевает постоянства скорости захоронения органического материала. Напротив. В принципе, скорость захоронения органических веществ связана со скоростью роста растений: нет роста — нет захоронения органического углерода, и наоборот. Однако остается эмпирический вопрос: может ли на самом деле фотодыхание определять концентрацию кислорода в воздухе и скорость захоронения органического материала?
Точного ответа мы пока не знаем, но данную гипотезу можно проверить экспериментальным путем. Результаты некоторых исследований показывают, что фотодыхание, безусловно, играет важную роль в поддержании постоянной концентрации кислорода в атмосфере, но одного этого механизма недостаточно. К такому выводу пришли Дэвид Бирлинг и его коллеги из Университета Шеффилда, опубликовавшие результаты исследований в журнале Philosophical Transactions of the Royal Society в 1998 г. Они измеряли скорость роста растений при различной концентрации кислорода в диапазоне от 21 до 35%. В среднем при 25 °C в среде с высоким содержанием кислорода растения росли на 18% медленнее, чем в обычной атмосфере, что подтверждало влияние кислорода на скорость роста растений. Однако величина эффекта для разных растений различалась: более древние группы растений держались гораздо лучше их современных родственников. Растения, появившиеся во время каменноугольного периода, такие как папоротники, гинкго и цикадовые (напоминающие пальму вечнозеленые растения, но не с орехами, а с шишками), менее чувствительны к повышению концентрации кислорода, чем их более молодые в эволюционном плане родственники — покрытосеменные (самая обширная группа современных растений, к которой относятся листопадные деревья и кусты, основные сельскохозяйственные культуры и все другие травянистые культуры и цветы). Кроме того, более древние растения, по-видимому, способны адаптироваться к новым условиям путем изменения структуры листьев. В частности, у них увеличивалось количество устьиц (пор в листьях, через которые осуществляется газообмен), что способствовало более активному накоплению углекислого газа в листьях.