Кислород. Молекула, изменившая мир | страница 67
Основная трудность в определении состава воздуха в тот или иной период заключается в дискриминации причинных и тривиальных факторов. Ранние модели эволюции атмосферы показывали, что уровень кислорода на протяжении истории Земли колебался практически от нуля до современных значений. Эти исследования показали наше полное непонимание механизмов, контролирующих содержание кислорода в атмосфере. Трудности моделирования эволюции атмосферы могут объясняться ошибочностью исходных предпосылок: изменения в действительности происходили совсем не в то время, что мы предполагали. Но, прежде чем сказать, что мы сами создали себе проблему, следует отметить, что такая же сложность возникает и при создании стационарных моделей, в которых концентрацию кислорода считают постоянной. Мы не знаем, за счет чего в воздухе поддерживается постоянная концентрация кислорода, тогда как другие условия меняются.
Что, к примеру, происходит при пожарах? Поскольку при горении потребляется кислород, считается, что пожары ограничивают накопление кислорода в атмосфере. Без вмешательства человека источником огня в природе обычно являются разряды молнии. В современных условиях в большинстве случаев разряды молнии не приводят к пожарам из-за влажной растительности, особенно если грозы сопровождаются проливными дождями. Но, как нам говорят, органическое вещество легко загорается на воздухе при содержании кислорода выше 25%, значит, при таких условиях молния может стать причиной пожара даже в дождевых лесах. Чем выше содержание кислорода, тем больше вероятность возгорания, а распространяющийся огонь потребляет кислород. Если содержание кислорода достигает очень высокого уровня, пожары восстанавливают баланс.
Этот простой сценарий обычно не вызывает возражений, однако, на самом деле, он вводит в заблуждение. Баланс восстановится только в том случае, если леса при пожаре испаряются (как мы «испаряем» еду, сжигая ее в процессе дыхания для получения энергии, в результате чего в воздух выделяются углекислый газ и пары воды). Каждый, кто видел лес после пожара, знает, что под действием огня образуется большое количество древесного угля, но древесный уголь практически не разрушается живыми организмами, включая бактерий. Углерод в такой форме сохраняется в земле в неизменном виде.
Мы уже поняли, что кислород может накапливатьcя в воздухе только при нарушении баланса между его выделением за счет фотосинтеза и потреблением за счет дыхания и окисления минералов и вулканических газов. Постоянное захоронение органического вещества является основной причиной нарушения этого баланса, поскольку предотвращает потребление кислорода в процессе дыхания. Захороненный углерод не окисляется дo углекислого газа, и киcлopoд остаетcя в воздухе. Поскольку древесный уголь, скорее всего, остается в земле в неизменном виде в отличие от другого растительного материала, суммарным результатом лесных пожаров является усиление захоронения углерода и, следовательно, повышение концентрации кислорода в атмосфере. Это, в свою очередь, дополнительно повышает вероятность пожаров и приводит к такому значительному накоплению кислорода, что вся жизнь на суше погибает. И только тогда, когда на суше полностью прекращается синтез органических веществ и фотосинтез, уровень кислорода начинает медленно снижаться за счет реакций с вулканическими газами и с минеральными веществами, высвобождающимися в процессе эрозии. Если споры переживают эту катастрофу, жизнь может возродиться вновь, но в таком случае цикл огня и воскрешения будет повторяться бесконечно. Так что огонь в очень слабой степени контролирует содержание кислорода в атмосфере.