Кислород. Молекула, изменившая мир | страница 60
Уникальное сочетание данных — изотопные подписи углерода, серы, стронция, а также распределение редкоземельных элементов — свидетельствует о повышении концентрации кислорода в атмосфере. По-видимому, сильнейшие изменения климата за 160 млн лет глобального оледенения привели к росту концентрации кислорода практически до современного уровня. Но в это же время после перерыва длительностью около миллиарда лет вновь начинают появляться полосатые железные горы, что говорит о наличии в океане большого количества растворенного железа. Это означает, что в глубинах океана кислорода было мало.
Итак, после последнего великого оледенения (варангерского оледенения, закончившегося 590 млн лет назад) в воздухе и в поверхностных водах оказалось много кислорода (таким воздухом мы могли бы дышать), но в глубинах океана по-прежнему было мало кислорода и много сероводорода, как в современном Черном море. Затем вдруг всего за несколько миллионов лет в этом чудном новом мире появляются первые крупные животные: плавающие на мелководье странные мешки протоплазмы, называемые вендобионтами, и ползающие по дну континентальных шельфов черви. Данное время характеризуется невероятно высоким потенциалом. Странно, но реализация этого потенциала как раз и привела к его быстрому исчерпанию.
Ницше однажды заметил, что человека нельзя спутать с Богом, поскольку человек имеет пищеварительную систему и вынужден испражняться. В статье в журнале Nature, опубликованной в 1995 г., Грэхэм Лоуган и его коллеги, тогда работавшие в Университете Индианы, возражали Ницше, утверждая, что наше сходство с Богом и само наше существование возможно только благодаря дефекации. Они считают, что фекальные массы, произведенные первыми крупными животными, очистили океаны, открыв путь кембрийскому взрыву. Пожалуй, это одна из самых приземленных теорий о климатических изменениях конца докембрийского периода.
Основываясь на детальном анализе изотопов углерода в молекулярных ископаемых, Лоуган и его группа обнаружили, что практически все органические вещества, образовавшиеся за длительный период застоя от 1,8 млрд до 750 млн лет назад, не были захоронены в виде осадочных пород, а оказались расщеплены и вновь использованы бактериями, обитавшими на больших глубинах. Отмершие остатки мельчайших, практически невесомых бактерий очень медленно погружаются на дно, так что «потребители» успевают использовать содержащийся в них органический углерод. Поскольку бóльшая часть углерода использовалась повторно, захоронено было сравнительно немного. А так как кислород накапливается только тогда, когда углерод уходит в землю, кислород концентрировался в воздухе очень медленно, и не было стимулов для эволюции. Более того, диффундировавший в глубь океана кислород нейтрализовался поднимавшимся сероводородом; такое равновесие может длиться бесконечно. В заключительной фазе самого первого глобального оледенения (2,3 млрд лет назад) высокая скорость эрозии и захоронения углерода привела к значительным изменениям, но органический дебрис закончился, и восстановилась исходная ситуация, характеризующаяся очень медленным захоронением углерода. Возобновление равновесия после оледенения, возможно, объясняет тот факт, что уровень кислорода в атмосфере на протяжении следующего миллиарда лет не поднимался выше 5 — 18% по отношению к современному. И бактерии никогда не смогли бы расшатать это бесконечно устойчивое равновесие.