Физические основы получения атомной энергии | страница 57
Рассмотренная нами цепная реакция деления тяжелых ядер — это основной путь в настоящее время для получения ядерной энергии. В качестве горючего для этой реакции, кроме урана 235, могут быть использованы уран 233, плутоний 239 и, по-видимому, плутоний 241.
Цепная реакция деления, осуществляемая с возможно большей и быстро нарастающей скоростью, происходит в форме атомного взрыва и используется в атомной бомбе.
Цепная реакция, протекающая без взрыва с регулируемой по воле человека скоростью, осуществляется в так называемых атомных реакторах или котлах; она служит для получения ядерной энергии как источника тепловой, механической и электрической энергии в промышленности, на транспорте, в военном деле и в быту.
Как уже указывалось, ядерную энергию можно получить не только при делении тяжелых ядер, но и путем соединения наиболее легких ядер в более тяжелые. Из кривой энергии связи, рассмотренной выше (см. рис. 20), следует, что наибольшая энергия должна выделяться при соедининии легких ядер в ядра атомов железа и никеля, энергия связи которых имеет самую большую величину, примерно равную 200 млн. ккал на 1 г. Такое количество энергии выделилось бы при образовании 1 г железа из протонов и нейтронов. При рассмотрении кривой энергии связи обращает на себя внимание гелий, ядра которого также имеют большую энергию связи (165 млн. ккал в расчете на 1 г). Реакции синтеза ядер гелия путем соединения ядер водорода сопровождаются значительно бóльшим выделением энергии на единицу массы, чем реакции деления тяжелых ядер.
Атомные ядра, имея положительный электрический заряд, отталкиваются друг от друга, как и всякие одноименно заряженные тела. Поэтому для слияния каких-либо двух ядер в одно ядро необходимо сначала преодолеть значительные силы электрического отталкивания. Только после того, когда ядра сблизятся настолько, что вступят в действие силы ядерного притяжения, произойдет их слияние.
Ядерные силы имеют, как мы уже знаем, огромную величину лишь внутри ядра, где они в миллионы раз превосходят силы электрического отталкивания между одноименно заряженными протонами. На границе же ядра они настолько быстро уменьшаются до нуля, что радиус их действия не превосходит 7∙10>-13см. Поэтому для слияния двух легких ядер их надо сблизить настолько, чтобы расстояние между ними стало меньше этой величины. Тогда ядерные силы заставят сближаться ядра дальше до полного слияния и образования нового, более тяжелого ядра.