Противодействие беспилотным летательным аппаратам | страница 20



. Примерами таких образцов микромеханических ИНС могут являться устройства Geo-iNAV (масса порядка 3 кг) — рис. 1.9.



Рис. 1.9. Навигационная система Geo-iNAV для БПЛА на основе СРНС и микромеханических ИНС

Таким образом на современном этапе развития навигационных систем малых БПЛА для счисления пути с приемлемой точностью требуется использование сигналов СРНС. Дополнительными способами повышения автономности и точности навигационных систем БПЛА является установка барометра и лазерного высотомера. Это оборудование позволяет повысить точность определения координат за счет использования дополнительных каналов комплексирования навигационных данных, а также формировать профили автономного полета БПЛА по электронным картам местности содержащим барометрические данные или высотные профили[51].

В средних и тяжелых БПЛА, в подавляющем числе случаев, используются навигационные системы 4-го типа — авиационные ИНС на основе лазерных или волоконно-оптических гироскопов. Однако масса таких ИНС составляет от 8 кг, что делает проблематичным их использование на малых (и даже на средних) БПЛА. Подробно тактико-технические характеристики (ТТХ) таких ИНС рассмотрены в работе[52]. Данные ИНС в среднем обеспечивают ошибку счисления пути порядка 1,85 км за 1 ч полета. При этом информация, поступающая по другим каналам: от АП СРНС, от высотомеров, сигналы от РСБН и от АЗН-В, является вторичной и после верификации и комплексирования она используются только для коррекции показаний ИНС[53].

Отметим, что быстрое развитие БПЛА приводит к усовершенствованию их навигационного обеспечения. К таким направлениям усовершенствования относятся следующие:

1) использование для повышения точности навигации многостанционных локальных РСБН или систем — имитаторов сигналов СРНС[54], при этом станции этих систем могут быть мобильными, находясь на автомобилях, и заблаговременно развертываться в зоне планируемого применения БПЛА;

2) использование для навигации электронных карт местности, полет по которым осуществляется в соответствии с данными радио- или лазерного высотомера, РЛС или ОЭС видимого диапазона[55];

3) использование для навигации различных автономных систем технического зрения[56], а также технологии SLAM (Simultaneous Localization and Mapping) — технологии автоматического одновременного построения карты местности в неизвестном пространстве, контроля текущего местоположения БПЛА и пройденного пути[57]