Восемь этюдов о бесконечности. Математическое приключение | страница 22



самого числа (проверьте несколько чисел и убедитесь в этом сами). Если брать только числа меньше 900, можно прийти к убеждению, что нечетные числа никогда не бывают «толстыми». Но пусть это вас не обманывает! Исследование конечного количества чисел, каким бы большим оно ни было, не означает, что следующее число не окажется исключением из правила. На самом деле нечетные числа бывают «толстыми»: сумма собственных делителей 945 (сложите 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189 и 315) равна… 975. Таким образом, мы открыли число 945 – наименьшее «толстое» нечетное число. И все же избыточный вес встречается у нечетных чисел довольно редко.

Мы еще вернемся в этой книге к теме совершенных чисел.

Интересные и скучные люди, интересные и скучные числа

Попытки создания «окончательных» списков иногда приводят к возникновению парадоксов следующего типа: из самого определения немедленно следует, что объект, задаваемый этим определением, должен быть исключен из списка. Что это значит?

Представим себе, что мы составляем два списка. Один из них – это список имен всех интересных людей на свете в порядке их интересности. Второй – список всех остальных. Он тоже будет упорядоченным: от самого скучного человека на свете до «слегка» неинтересного.

Вот как выглядят верхние части обоих списков.

Интересные люди: Пифагор, Леонардо да Винчи, Клеопатра, Моцарт, Эйнштейн, Мэрилин Монро, Сократ, Мессалина, Байрон, Наполеон, Будда, Жанна д’Арк, Александр Македонский…

Неинтересные люди: Реджинальд Зевокк, Брунгильда Дремотная, Якоб Снотвор, Владимир Сиестин, Билл Занудинг, Найлз Коматоз, Бернард Нуичтович, Карл Спячкин, Гарри Тоскливер, Тим Тупп…

Однако не все так просто. Вот, например, Реджинальд Зевокк. Если верить нашему списку, он самый скучный человек на свете. Но сам этот факт делает его человеком интересным. Ну в самом деле представьте себе титул САМОГО скучного человека в мире! Поэтому мы должны перенести его в список интересных людей. Разумеется, он не попадет даже близко к вершине этого списка, но тем не менее должен оказаться в нем, причем, вероятно, на каком-нибудь вполне достойном месте.

А теперь посмотрите, что происходит дальше. Поскольку мы убрали Реджинальда из скучного списка, теперь самым скучным человеком на свете стала Брунгильда Дремотная. Но это, в свою очередь, делает несколько интересной ее, что означает, что и ее следует перенести в первый список. Если мы продолжим этот процесс, мы неизбежно придем к выводу, что в мире вообще нет – и никогда не было – ни одного неинтересного человека. Я уверен, что вы давно уже обнаружили ошибку этого рассуждения.