Мир астрономии | страница 25



Но так ли на самом деле оптимистично выглядят перспективы теории элементарных частиц? Объединение электромагнитных и слабых взаимодействий — действительно триумф теоретической физики, причем триумф, увенчанный убедительным экспериментом. Мы знаем теперь, как ведет себя вещество и что оно собой представляет до энергий 100 ГЭВ. Но насколько справедлива экстраполяция на энергии 10>14 ГЭВ? Ведь здесь разница в 12 порядков, в тысячу миллиардов раз?

Нельзя исключить того, что здесь мы можем столкнуться с неизвестными явлениями, с новой физикой. Большинство физиков не верит, что между энергиями в 10>2 ГЭВ и 10>14 ГЭВ лежит «пустыня», что здесь не могут проявиться какие-то новые явления, и поэтому вопрос о том, какие частицы можно считать истинно элементарными, остается открытым.

Нам же важно сейчас отметить следующее. В нашем мысленном эксперименте мы начали сжимать Вселенную для того, чтобы посмотреть, что будет при этом с веществом. Мы дошли до энергии в сотни ГЭВ. Здесь есть эксперимент, здесь можно с уверенностью сказать, что физика дает хорошие прогнозы по интересующему нас вопросу. Теперь можно подвести некоторые итоги.

Этой энергии соответствует температура 10>15 K. Ясно, что ни атомных ядер, ни протонов, ни нейтронов при такой температуре нет. Есть лишь частицы, претендующие на роль истинно элементарных: лептоны, фотоны да вырвавшиеся на свободу кварки. Весь этот кварко-лептонный суп находится в состоянии, близком к термодинамическому равновесию. Это означает, что концентрация частиц поддерживается постоянной, скорости их рождения и гибели равны.

Можно, конечно, пойти дальше и пытаться смотреть, что будет с веществом при более высоких энергиях. Теоретики выпустили огромное количество работ, посвященных этой теме. Но, во-первых, твердо установившейся теории здесь нет, во-вторых, когда мы приближаемся к планковскому порогу, мы волей-неволей должны рассматривать Вселенную, радиус кривизны которой меньше размеров элементарных частиц, с плотностью вещества, достигающей 10>94 г/см>3. Это, вообще говоря, terra incognita для современной физики, и вряд ли кто-либо возьмется сказать, что представляет собой сверхплотная Вселенная. Можно надеяться, однако, лишь на то, что в этих экстремальных условиях применимы понятия плотности энергии и давления. Мы чуть позднее в самых общих чертах поговорим об очень-очень ранней Вселенной, а пока попытаемся описать ее начиная с времен от 10>–10